Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/README-checkpoint.md +99 -0
- README.md +99 -3
- config.json +10 -0
- eole-config.yaml +98 -0
- eole-model/config.json +132 -0
- eole-model/en.spm.model +3 -0
- eole-model/model.00.safetensors +3 -0
- eole-model/pt.spm.model +3 -0
- eole-model/vocab.json +0 -0
- model.bin +3 -0
- source_vocabulary.json +0 -0
- src.spm.model +3 -0
- target_vocabulary.json +0 -0
- tgt.spm.model +3 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- pt
|
5 |
+
tags:
|
6 |
+
- translation
|
7 |
+
license: cc-by-4.0
|
8 |
+
datasets:
|
9 |
+
- quickmt/quickmt-train.pt-en
|
10 |
+
model-index:
|
11 |
+
- name: quickmt-pt-en
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Translation por-eng
|
15 |
+
type: translation
|
16 |
+
args: por-eng
|
17 |
+
dataset:
|
18 |
+
name: flores101-devtest
|
19 |
+
type: flores_101
|
20 |
+
args: por_Latn eng_Latn devtest
|
21 |
+
metrics:
|
22 |
+
- name: BLEU
|
23 |
+
type: bleu
|
24 |
+
value: 48.67
|
25 |
+
- name: CHRF
|
26 |
+
type: chrf
|
27 |
+
value: 71.47
|
28 |
+
- name: COMET
|
29 |
+
type: comet
|
30 |
+
value: 89.09
|
31 |
+
---
|
32 |
+
|
33 |
+
|
34 |
+
# `quickmt-pt-en` Neural Machine Translation Model
|
35 |
+
|
36 |
+
`quickmt-pt-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `pt` into `en`.
|
37 |
+
|
38 |
+
|
39 |
+
## Model Information
|
40 |
+
|
41 |
+
* Trained using [`eole`](https://github.com/eole-nlp/eole)
|
42 |
+
* 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
|
43 |
+
* 50k joint Sentencepiece vocabulary
|
44 |
+
* Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
|
45 |
+
* Training data: https://huggingface.co/datasets/quickmt/quickmt-train.pt-en/tree/main
|
46 |
+
|
47 |
+
See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
|
48 |
+
|
49 |
+
## Usage with `quickmt`
|
50 |
+
|
51 |
+
You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
|
52 |
+
|
53 |
+
Next, install the `quickmt` python library and download the model:
|
54 |
+
|
55 |
+
```bash
|
56 |
+
git clone https://github.com/quickmt/quickmt.git
|
57 |
+
pip install ./quickmt/
|
58 |
+
|
59 |
+
quickmt-model-download quickmt/quickmt-pt-en ./quickmt-pt-en
|
60 |
+
```
|
61 |
+
|
62 |
+
Finally use the model in python:
|
63 |
+
|
64 |
+
```python
|
65 |
+
from quickmt import Translator
|
66 |
+
|
67 |
+
# Auto-detects GPU, set to "cpu" to force CPU inference
|
68 |
+
t = Translator("./quickmt-pt-en/", device="auto")
|
69 |
+
|
70 |
+
# Translate - set beam size to 1 for faster speed (but lower quality)
|
71 |
+
sample_text = 'O Médico Ehud Ur, um professor de medicina na Universidade de Dalhousie em Halifax, Nova Escócia, e presidente da divisão clínica e científica da Canadian Diabetes Association disse que o estudo ainda está dando seus primeiros passos.'
|
72 |
+
|
73 |
+
t(sample_text, beam_size=5)
|
74 |
+
```
|
75 |
+
|
76 |
+
> 'Doctor Ehud Ur, a professor of medicine at Dalhousie University in Halifax, Nova Scotia, and president of the clinical and scientific division of the Canadian Diabetes Association said the study is still taking its first steps.'
|
77 |
+
|
78 |
+
```python
|
79 |
+
# Get alternative translations by sampling
|
80 |
+
# You can pass any cTranslate2 `translate_batch` arguments
|
81 |
+
t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
|
82 |
+
```
|
83 |
+
|
84 |
+
> 'Doctor Ehud Ur, a professor of medicine at Dalhousie University in Halifax, Nova Scotia, and president of the clinical and scientific division of the Canadian Diabetes Association said the study is still giving it its first steps.'
|
85 |
+
|
86 |
+
The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
|
87 |
+
|
88 |
+
## Metrics
|
89 |
+
|
90 |
+
`bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("por_Latn"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a larger batch size).
|
91 |
+
|
92 |
+
| | bleu | chrf2 | comet22 | Time (s) |
|
93 |
+
|:---------------------------------|-------:|--------:|----------:|-----------:|
|
94 |
+
| quickmt/quickmt-pt-en | 48.67 | 71.47 | 89.09 | 1.24 |
|
95 |
+
| Helsink-NLP/opus-mt-roa-en | 45.1 | 69.43 | 88.22 | 3.69 |
|
96 |
+
| facebook/nllb-200-distilled-600M | 48.77 | 71.3 | 89.2 | 21.42 |
|
97 |
+
| facebook/nllb-200-distilled-1.3B | 51.02 | 72.83 | 89.78 | 36.86 |
|
98 |
+
| facebook/m2m100_418M | 40.01 | 66.14 | 86.01 | 17.8 |
|
99 |
+
| facebook/m2m100_1.2B | 45.69 | 69.52 | 88.3 | 34.42 |
|
README.md
CHANGED
@@ -1,3 +1,99 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- pt
|
5 |
+
tags:
|
6 |
+
- translation
|
7 |
+
license: cc-by-4.0
|
8 |
+
datasets:
|
9 |
+
- quickmt/quickmt-train.pt-en
|
10 |
+
model-index:
|
11 |
+
- name: quickmt-pt-en
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Translation por-eng
|
15 |
+
type: translation
|
16 |
+
args: por-eng
|
17 |
+
dataset:
|
18 |
+
name: flores101-devtest
|
19 |
+
type: flores_101
|
20 |
+
args: por_Latn eng_Latn devtest
|
21 |
+
metrics:
|
22 |
+
- name: BLEU
|
23 |
+
type: bleu
|
24 |
+
value: 48.67
|
25 |
+
- name: CHRF
|
26 |
+
type: chrf
|
27 |
+
value: 71.47
|
28 |
+
- name: COMET
|
29 |
+
type: comet
|
30 |
+
value: 89.09
|
31 |
+
---
|
32 |
+
|
33 |
+
|
34 |
+
# `quickmt-pt-en` Neural Machine Translation Model
|
35 |
+
|
36 |
+
`quickmt-pt-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `pt` into `en`.
|
37 |
+
|
38 |
+
|
39 |
+
## Model Information
|
40 |
+
|
41 |
+
* Trained using [`eole`](https://github.com/eole-nlp/eole)
|
42 |
+
* 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
|
43 |
+
* 50k joint Sentencepiece vocabulary
|
44 |
+
* Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
|
45 |
+
* Training data: https://huggingface.co/datasets/quickmt/quickmt-train.pt-en/tree/main
|
46 |
+
|
47 |
+
See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
|
48 |
+
|
49 |
+
## Usage with `quickmt`
|
50 |
+
|
51 |
+
You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
|
52 |
+
|
53 |
+
Next, install the `quickmt` python library and download the model:
|
54 |
+
|
55 |
+
```bash
|
56 |
+
git clone https://github.com/quickmt/quickmt.git
|
57 |
+
pip install ./quickmt/
|
58 |
+
|
59 |
+
quickmt-model-download quickmt/quickmt-pt-en ./quickmt-pt-en
|
60 |
+
```
|
61 |
+
|
62 |
+
Finally use the model in python:
|
63 |
+
|
64 |
+
```python
|
65 |
+
from quickmt import Translator
|
66 |
+
|
67 |
+
# Auto-detects GPU, set to "cpu" to force CPU inference
|
68 |
+
t = Translator("./quickmt-pt-en/", device="auto")
|
69 |
+
|
70 |
+
# Translate - set beam size to 1 for faster speed (but lower quality)
|
71 |
+
sample_text = 'O Médico Ehud Ur, um professor de medicina na Universidade de Dalhousie em Halifax, Nova Escócia, e presidente da divisão clínica e científica da Canadian Diabetes Association disse que o estudo ainda está dando seus primeiros passos.'
|
72 |
+
|
73 |
+
t(sample_text, beam_size=5)
|
74 |
+
```
|
75 |
+
|
76 |
+
> 'Doctor Ehud Ur, a professor of medicine at Dalhousie University in Halifax, Nova Scotia, and president of the clinical and scientific division of the Canadian Diabetes Association said the study is still taking its first steps.'
|
77 |
+
|
78 |
+
```python
|
79 |
+
# Get alternative translations by sampling
|
80 |
+
# You can pass any cTranslate2 `translate_batch` arguments
|
81 |
+
t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
|
82 |
+
```
|
83 |
+
|
84 |
+
> 'Doctor Ehud Ur, a professor of medicine at Dalhousie University in Halifax, Nova Scotia, and president of the clinical and scientific division of the Canadian Diabetes Association said the study is still giving it its first steps.'
|
85 |
+
|
86 |
+
The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
|
87 |
+
|
88 |
+
## Metrics
|
89 |
+
|
90 |
+
`bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("por_Latn"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a larger batch size).
|
91 |
+
|
92 |
+
| | bleu | chrf2 | comet22 | Time (s) |
|
93 |
+
|:---------------------------------|-------:|--------:|----------:|-----------:|
|
94 |
+
| quickmt/quickmt-pt-en | 48.67 | 71.47 | 89.09 | 1.24 |
|
95 |
+
| Helsink-NLP/opus-mt-roa-en | 45.1 | 69.43 | 88.22 | 3.69 |
|
96 |
+
| facebook/nllb-200-distilled-600M | 48.77 | 71.3 | 89.2 | 21.42 |
|
97 |
+
| facebook/nllb-200-distilled-1.3B | 51.02 | 72.83 | 89.78 | 36.86 |
|
98 |
+
| facebook/m2m100_418M | 40.01 | 66.14 | 86.01 | 17.8 |
|
99 |
+
| facebook/m2m100_1.2B | 45.69 | 69.52 | 88.3 | 34.42 |
|
config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_source_bos": false,
|
3 |
+
"add_source_eos": false,
|
4 |
+
"bos_token": "<s>",
|
5 |
+
"decoder_start_token": "<s>",
|
6 |
+
"eos_token": "</s>",
|
7 |
+
"layer_norm_epsilon": 1e-06,
|
8 |
+
"multi_query_attention": false,
|
9 |
+
"unk_token": "<unk>"
|
10 |
+
}
|
eole-config.yaml
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## IO
|
2 |
+
save_data: data
|
3 |
+
overwrite: True
|
4 |
+
seed: 1234
|
5 |
+
report_every: 100
|
6 |
+
valid_metrics: ["BLEU"]
|
7 |
+
tensorboard: true
|
8 |
+
tensorboard_log_dir: tensorboard
|
9 |
+
|
10 |
+
### Vocab
|
11 |
+
src_vocab: pt.eole.vocab
|
12 |
+
tgt_vocab: en.eole.vocab
|
13 |
+
src_vocab_size: 20000
|
14 |
+
tgt_vocab_size: 20000
|
15 |
+
vocab_size_multiple: 8
|
16 |
+
share_vocab: false
|
17 |
+
n_sample: 0
|
18 |
+
|
19 |
+
data:
|
20 |
+
corpus_1:
|
21 |
+
# path_src: hf://quickmt/quickmt-train.pt-en/pt
|
22 |
+
# path_tgt: hf://quickmt/quickmt-train.pt-en/en
|
23 |
+
# path_sco: hf://quickmt/quickmt-train.pt-en/sco
|
24 |
+
path_src: train.pt
|
25 |
+
path_tgt: train.en
|
26 |
+
valid:
|
27 |
+
path_src: dev.pt
|
28 |
+
path_tgt: dev.en
|
29 |
+
|
30 |
+
transforms: [sentencepiece, filtertoolong]
|
31 |
+
transforms_configs:
|
32 |
+
sentencepiece:
|
33 |
+
src_subword_model: "pt.spm.model"
|
34 |
+
tgt_subword_model: "en.spm.model"
|
35 |
+
filtertoolong:
|
36 |
+
src_seq_length: 256
|
37 |
+
tgt_seq_length: 256
|
38 |
+
|
39 |
+
training:
|
40 |
+
# Run configuration
|
41 |
+
model_path: quickmt-pt-en-eole-model
|
42 |
+
#train_from: model
|
43 |
+
keep_checkpoint: 4
|
44 |
+
train_steps: 100000
|
45 |
+
save_checkpoint_steps: 5000
|
46 |
+
valid_steps: 5000
|
47 |
+
|
48 |
+
# Train on a single GPU
|
49 |
+
world_size: 1
|
50 |
+
gpu_ranks: [0]
|
51 |
+
|
52 |
+
# Batching 10240
|
53 |
+
batch_type: "tokens"
|
54 |
+
batch_size: 8000
|
55 |
+
valid_batch_size: 4096
|
56 |
+
batch_size_multiple: 8
|
57 |
+
accum_count: [10]
|
58 |
+
accum_steps: [0]
|
59 |
+
|
60 |
+
# Optimizer & Compute
|
61 |
+
compute_dtype: "fp16"
|
62 |
+
optim: "adamw"
|
63 |
+
#use_amp: False
|
64 |
+
learning_rate: 2.0
|
65 |
+
warmup_steps: 4000
|
66 |
+
decay_method: "noam"
|
67 |
+
adam_beta2: 0.998
|
68 |
+
|
69 |
+
# Data loading
|
70 |
+
bucket_size: 128000
|
71 |
+
num_workers: 4
|
72 |
+
prefetch_factor: 32
|
73 |
+
|
74 |
+
# Hyperparams
|
75 |
+
dropout_steps: [0]
|
76 |
+
dropout: [0.1]
|
77 |
+
attention_dropout: [0.1]
|
78 |
+
max_grad_norm: 0
|
79 |
+
label_smoothing: 0.1
|
80 |
+
average_decay: 0.0001
|
81 |
+
param_init_method: xavier_uniform
|
82 |
+
normalization: "tokens"
|
83 |
+
|
84 |
+
model:
|
85 |
+
architecture: "transformer"
|
86 |
+
share_embeddings: false
|
87 |
+
share_decoder_embeddings: false
|
88 |
+
hidden_size: 1024
|
89 |
+
encoder:
|
90 |
+
layers: 8
|
91 |
+
decoder:
|
92 |
+
layers: 2
|
93 |
+
heads: 8
|
94 |
+
transformer_ff: 4096
|
95 |
+
embeddings:
|
96 |
+
word_vec_size: 1024
|
97 |
+
position_encoding_type: "SinusoidalInterleaved"
|
98 |
+
|
eole-model/config.json
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"tensorboard": true,
|
3 |
+
"tensorboard_log_dir": "tensorboard",
|
4 |
+
"src_vocab_size": 20000,
|
5 |
+
"report_every": 100,
|
6 |
+
"tgt_vocab_size": 20000,
|
7 |
+
"transforms": [
|
8 |
+
"sentencepiece",
|
9 |
+
"filtertoolong"
|
10 |
+
],
|
11 |
+
"seed": 1234,
|
12 |
+
"vocab_size_multiple": 8,
|
13 |
+
"overwrite": true,
|
14 |
+
"tensorboard_log_dir_dated": "tensorboard/May-12_17-49-06",
|
15 |
+
"save_data": "data",
|
16 |
+
"tgt_vocab": "en.eole.vocab",
|
17 |
+
"n_sample": 0,
|
18 |
+
"share_vocab": false,
|
19 |
+
"src_vocab": "pt.eole.vocab",
|
20 |
+
"valid_metrics": [
|
21 |
+
"BLEU"
|
22 |
+
],
|
23 |
+
"training": {
|
24 |
+
"bucket_size": 128000,
|
25 |
+
"gpu_ranks": [
|
26 |
+
0
|
27 |
+
],
|
28 |
+
"attention_dropout": [
|
29 |
+
0.1
|
30 |
+
],
|
31 |
+
"normalization": "tokens",
|
32 |
+
"label_smoothing": 0.1,
|
33 |
+
"param_init_method": "xavier_uniform",
|
34 |
+
"save_checkpoint_steps": 5000,
|
35 |
+
"compute_dtype": "torch.float16",
|
36 |
+
"num_workers": 0,
|
37 |
+
"world_size": 1,
|
38 |
+
"dropout_steps": [
|
39 |
+
0
|
40 |
+
],
|
41 |
+
"valid_steps": 5000,
|
42 |
+
"batch_size_multiple": 8,
|
43 |
+
"decay_method": "noam",
|
44 |
+
"batch_size": 8000,
|
45 |
+
"keep_checkpoint": 4,
|
46 |
+
"prefetch_factor": 32,
|
47 |
+
"adam_beta2": 0.998,
|
48 |
+
"warmup_steps": 4000,
|
49 |
+
"valid_batch_size": 4096,
|
50 |
+
"batch_type": "tokens",
|
51 |
+
"model_path": "quickmt-pt-en-eole-model",
|
52 |
+
"accum_count": [
|
53 |
+
10
|
54 |
+
],
|
55 |
+
"optim": "adamw",
|
56 |
+
"average_decay": 0.0001,
|
57 |
+
"max_grad_norm": 0.0,
|
58 |
+
"train_steps": 100000,
|
59 |
+
"learning_rate": 2.0,
|
60 |
+
"dropout": [
|
61 |
+
0.1
|
62 |
+
],
|
63 |
+
"accum_steps": [
|
64 |
+
0
|
65 |
+
]
|
66 |
+
},
|
67 |
+
"model": {
|
68 |
+
"share_decoder_embeddings": false,
|
69 |
+
"position_encoding_type": "SinusoidalInterleaved",
|
70 |
+
"architecture": "transformer",
|
71 |
+
"transformer_ff": 4096,
|
72 |
+
"heads": 8,
|
73 |
+
"share_embeddings": false,
|
74 |
+
"hidden_size": 1024,
|
75 |
+
"embeddings": {
|
76 |
+
"position_encoding_type": "SinusoidalInterleaved",
|
77 |
+
"src_word_vec_size": 1024,
|
78 |
+
"tgt_word_vec_size": 1024,
|
79 |
+
"word_vec_size": 1024
|
80 |
+
},
|
81 |
+
"decoder": {
|
82 |
+
"n_positions": null,
|
83 |
+
"position_encoding_type": "SinusoidalInterleaved",
|
84 |
+
"transformer_ff": 4096,
|
85 |
+
"layers": 2,
|
86 |
+
"heads": 8,
|
87 |
+
"tgt_word_vec_size": 1024,
|
88 |
+
"decoder_type": "transformer",
|
89 |
+
"hidden_size": 1024
|
90 |
+
},
|
91 |
+
"encoder": {
|
92 |
+
"encoder_type": "transformer",
|
93 |
+
"n_positions": null,
|
94 |
+
"position_encoding_type": "SinusoidalInterleaved",
|
95 |
+
"transformer_ff": 4096,
|
96 |
+
"layers": 8,
|
97 |
+
"src_word_vec_size": 1024,
|
98 |
+
"heads": 8,
|
99 |
+
"hidden_size": 1024
|
100 |
+
}
|
101 |
+
},
|
102 |
+
"transforms_configs": {
|
103 |
+
"filtertoolong": {
|
104 |
+
"tgt_seq_length": 256,
|
105 |
+
"src_seq_length": 256
|
106 |
+
},
|
107 |
+
"sentencepiece": {
|
108 |
+
"src_subword_model": "${MODEL_PATH}/pt.spm.model",
|
109 |
+
"tgt_subword_model": "${MODEL_PATH}/en.spm.model"
|
110 |
+
}
|
111 |
+
},
|
112 |
+
"data": {
|
113 |
+
"corpus_1": {
|
114 |
+
"transforms": [
|
115 |
+
"sentencepiece",
|
116 |
+
"filtertoolong"
|
117 |
+
],
|
118 |
+
"path_align": null,
|
119 |
+
"path_tgt": "train.en",
|
120 |
+
"path_src": "train.pt"
|
121 |
+
},
|
122 |
+
"valid": {
|
123 |
+
"transforms": [
|
124 |
+
"sentencepiece",
|
125 |
+
"filtertoolong"
|
126 |
+
],
|
127 |
+
"path_align": null,
|
128 |
+
"path_tgt": "dev.en",
|
129 |
+
"path_src": "dev.pt"
|
130 |
+
}
|
131 |
+
}
|
132 |
+
}
|
eole-model/en.spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78491a281ebde4ebda824d711469fdaf02970c4d5d3a0ff55e4cbb73c6f6f888
|
3 |
+
size 587171
|
eole-model/model.00.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:840efa28e2ce211b7db72ebc4c92703a55074c30f237615c5c481496cc248b57
|
3 |
+
size 823882912
|
eole-model/pt.spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:582204569977759a46b4636cf0ead18bb981cd2ca7d9d42a15962072835b6d25
|
3 |
+
size 600641
|
eole-model/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:280031a6870098ef8b80d7ffa7cd1c4ea77e6eb05fdb8a90fa46b60e11ba11fc
|
3 |
+
size 401699775
|
source_vocabulary.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src.spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:582204569977759a46b4636cf0ead18bb981cd2ca7d9d42a15962072835b6d25
|
3 |
+
size 600641
|
target_vocabulary.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tgt.spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78491a281ebde4ebda824d711469fdaf02970c4d5d3a0ff55e4cbb73c6f6f888
|
3 |
+
size 587171
|