radinplaid commited on
Commit
f453810
·
verified ·
1 Parent(s): 85623ab

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - vi
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.vi-en
10
+ model-index:
11
+ - name: quickmt-vi-en
12
+ results:
13
+ - task:
14
+ name: Translation vie-eng
15
+ type: translation
16
+ args: vie-eng
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: vie_Latn eng_Latn devtest
21
+ metrics:
22
+ - name: BLEU
23
+ type: bleu
24
+ value: 37.6
25
+ - name: CHRF
26
+ type: chrf
27
+ value: 62.86
28
+ - name: COMET
29
+ type: comet
30
+ value: 87.21
31
+ ---
32
+
33
+
34
+ # `quickmt-vi-en` Neural Machine Translation Model
35
+
36
+ `quickmt-vi-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `vi` into `en`.
37
+
38
+
39
+ ## Model Information
40
+
41
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
42
+ * 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
43
+ * 50k joint Sentencepiece vocabulary
44
+ * Expested for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
45
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.vi-en/tree/main
46
+
47
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
48
+
49
+ ## Usage with `quickmt`
50
+
51
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
52
+
53
+ Next, install the `quickmt` python library and download the model:
54
+
55
+ ```bash
56
+ git clone https://github.com/quickmt/quickmt.git
57
+ pip install ./quickmt/
58
+
59
+ quickmt-model-download quickmt/quickmt-vi-en ./quickmt-vi-en
60
+ ```
61
+
62
+ Finally use the model in python:
63
+
64
+ ```python
65
+ from quickmt impest Translator
66
+
67
+ # Auto-detects GPU, set to "cpu" to force CPU inference
68
+ t = Translator("./quickmt-vi-en/", device="auto")
69
+
70
+ # Translate - set beam size to 1 for faster speed (but lower quality)
71
+ sample_text = 'Tiến sĩ Ehud Ur, giáo sư y khoa của Trường Đại học Dalhousie ở Halifax, Nova Scotia và là chủ tịch ban lâm sàng và khoa học của Hiệp hội Bệnh Tiểu đường Canada cảnh báo rằng nghiên cứu này chỉ mới là sự khởi đầu.'
72
+
73
+ t(sample_text, beam_size=5)
74
+ ```
75
+
76
+ > 'Dr. Ehud Ur, a professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific committee of the Canadian Diabetes Association, warns that the study is just the beginning.'
77
+
78
+ ```python
79
+ # Get alternative translations by sampling
80
+ # You can pass any cTranslate2 `translate_batch` arguments
81
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
82
+ ```
83
+
84
+ > 'Dr Ehud Ur, professor of medicine at Dalhousie College in Halifax, Nova Scotia and chair of the clinical and scientific panel of the Diabetes Association of Canada warns that this study was only the beginning.'
85
+
86
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
87
+
88
+ ## Metrics
89
+
90
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("vie_Latn"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a larger batch size).
91
+
92
+ | | bleu | chrf2 | comet22 | Time (s) |
93
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
94
+ | quickmt/quickmt-vi-en | 37.6 | 62.86 | 87.21 | 1.27 |
95
+ | Helsinki-NLP/opus-mt-vi-en | 25.93 | 53.32 | 81.77 | 3.45 |
96
+ | facebook/nllb-200-distilled-600M | 34.99 | 60.35 | 86.13 | 24.71 |
97
+ | facebook/nllb-200-distilled-1.3B | 37.67 | 62.64 | 87.12 | 36.8 |
98
+ | facebook/m2m100_418M | 27.63 | 55.39 | 82.79 | 17.61 |
99
+ | facebook/m2m100_1.2B | 32.79 | 59.01 | 85.58 | 33.98 |
100
+
.ipynb_checkpoints/eole-config-checkpoint.yaml ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: data
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: vi.eole.vocab
12
+ tgt_vocab: en.eole.vocab
13
+ src_vocab_size: 20000
14
+ tgt_vocab_size: 20000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.vi-en/vi
22
+ path_tgt: hf://quickmt/quickmt-train.vi-en/en
23
+ path_sco: hf://quickmt/quickmt-train.vi-en/sco
24
+ valid:
25
+ path_src: valid.vi
26
+ path_tgt: valid.en
27
+
28
+ transforms: [sentencepiece, filtertoolong]
29
+ transforms_configs:
30
+ sentencepiece:
31
+ src_subword_model: "vi.spm.model"
32
+ tgt_subword_model: "en.spm.model"
33
+ filtertoolong:
34
+ src_seq_length: 256
35
+ tgt_seq_length: 256
36
+
37
+ training:
38
+ # Run configuration
39
+ model_path: quickmt-vi-en-eole-model
40
+ keep_checkpoint: 4
41
+ train_steps: 200000
42
+ save_checkpoint_steps: 2000
43
+ valid_steps: 2000
44
+
45
+ # Train on a single GPU
46
+ world_size: 1
47
+ gpu_ranks: [0]
48
+
49
+ # Batching
50
+ batch_type: "tokens"
51
+ batch_size: 8000
52
+ valid_batch_size: 4096
53
+ batch_size_multiple: 8
54
+ accum_count: [8]
55
+ accum_steps: [0]
56
+
57
+ # Optimizer & Compute
58
+ compute_dtype: "fp16"
59
+ optim: "adamw"
60
+ #use_amp: False
61
+ learning_rate: 2.0
62
+ warmup_steps: 4000
63
+ decay_method: "noam"
64
+ adam_beta2: 0.998
65
+
66
+ # Data loading
67
+ bucket_size: 128000
68
+ num_workers: 4
69
+ prefetch_factor: 32
70
+
71
+ # Hyperparams
72
+ dropout_steps: [0]
73
+ dropout: [0.1]
74
+ attention_dropout: [0.1]
75
+ max_grad_norm: 0
76
+ label_smoothing: 0.1
77
+ average_decay: 0.0001
78
+ param_init_method: xavier_uniform
79
+ normalization: "tokens"
80
+
81
+ model:
82
+ architecture: "transformer"
83
+ share_embeddings: false
84
+ share_decoder_embeddings: false
85
+ hidden_size: 1024
86
+ encoder:
87
+ layers: 8
88
+ decoder:
89
+ layers: 2
90
+ heads: 8
91
+ transformer_ff: 4096
92
+ embeddings:
93
+ word_vec_size: 1024
94
+ position_encoding_type: "SinusoidalInterleaved"
95
+
README.md CHANGED
@@ -1,3 +1,100 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - vi
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.vi-en
10
+ model-index:
11
+ - name: quickmt-vi-en
12
+ results:
13
+ - task:
14
+ name: Translation vie-eng
15
+ type: translation
16
+ args: vie-eng
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: vie_Latn eng_Latn devtest
21
+ metrics:
22
+ - name: BLEU
23
+ type: bleu
24
+ value: 37.6
25
+ - name: CHRF
26
+ type: chrf
27
+ value: 62.86
28
+ - name: COMET
29
+ type: comet
30
+ value: 87.21
31
+ ---
32
+
33
+
34
+ # `quickmt-vi-en` Neural Machine Translation Model
35
+
36
+ `quickmt-vi-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `vi` into `en`.
37
+
38
+
39
+ ## Model Information
40
+
41
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
42
+ * 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
43
+ * 50k joint Sentencepiece vocabulary
44
+ * Expested for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
45
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.vi-en/tree/main
46
+
47
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
48
+
49
+ ## Usage with `quickmt`
50
+
51
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
52
+
53
+ Next, install the `quickmt` python library and download the model:
54
+
55
+ ```bash
56
+ git clone https://github.com/quickmt/quickmt.git
57
+ pip install ./quickmt/
58
+
59
+ quickmt-model-download quickmt/quickmt-vi-en ./quickmt-vi-en
60
+ ```
61
+
62
+ Finally use the model in python:
63
+
64
+ ```python
65
+ from quickmt impest Translator
66
+
67
+ # Auto-detects GPU, set to "cpu" to force CPU inference
68
+ t = Translator("./quickmt-vi-en/", device="auto")
69
+
70
+ # Translate - set beam size to 1 for faster speed (but lower quality)
71
+ sample_text = 'Tiến sĩ Ehud Ur, giáo sư y khoa của Trường Đại học Dalhousie ở Halifax, Nova Scotia và là chủ tịch ban lâm sàng và khoa học của Hiệp hội Bệnh Tiểu đường Canada cảnh báo rằng nghiên cứu này chỉ mới là sự khởi đầu.'
72
+
73
+ t(sample_text, beam_size=5)
74
+ ```
75
+
76
+ > 'Dr. Ehud Ur, a professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific committee of the Canadian Diabetes Association, warns that the study is just the beginning.'
77
+
78
+ ```python
79
+ # Get alternative translations by sampling
80
+ # You can pass any cTranslate2 `translate_batch` arguments
81
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
82
+ ```
83
+
84
+ > 'Dr Ehud Ur, professor of medicine at Dalhousie College in Halifax, Nova Scotia and chair of the clinical and scientific panel of the Diabetes Association of Canada warns that this study was only the beginning.'
85
+
86
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
87
+
88
+ ## Metrics
89
+
90
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("vie_Latn"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a larger batch size).
91
+
92
+ | | bleu | chrf2 | comet22 | Time (s) |
93
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
94
+ | quickmt/quickmt-vi-en | 37.6 | 62.86 | 87.21 | 1.27 |
95
+ | Helsinki-NLP/opus-mt-vi-en | 25.93 | 53.32 | 81.77 | 3.45 |
96
+ | facebook/nllb-200-distilled-600M | 34.99 | 60.35 | 86.13 | 24.71 |
97
+ | facebook/nllb-200-distilled-1.3B | 37.67 | 62.64 | 87.12 | 36.8 |
98
+ | facebook/m2m100_418M | 27.63 | 55.39 | 82.79 | 17.61 |
99
+ | facebook/m2m100_1.2B | 32.79 | 59.01 | 85.58 | 33.98 |
100
+
config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_source_bos": false,
3
+ "add_source_eos": false,
4
+ "bos_token": "<s>",
5
+ "decoder_start_token": "<s>",
6
+ "eos_token": "</s>",
7
+ "layer_norm_epsilon": 1e-06,
8
+ "multi_query_attention": false,
9
+ "unk_token": "<unk>"
10
+ }
eole-config.yaml ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: data
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: vi.eole.vocab
12
+ tgt_vocab: en.eole.vocab
13
+ src_vocab_size: 20000
14
+ tgt_vocab_size: 20000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.vi-en/vi
22
+ path_tgt: hf://quickmt/quickmt-train.vi-en/en
23
+ path_sco: hf://quickmt/quickmt-train.vi-en/sco
24
+ valid:
25
+ path_src: valid.vi
26
+ path_tgt: valid.en
27
+
28
+ transforms: [sentencepiece, filtertoolong]
29
+ transforms_configs:
30
+ sentencepiece:
31
+ src_subword_model: "vi.spm.model"
32
+ tgt_subword_model: "en.spm.model"
33
+ filtertoolong:
34
+ src_seq_length: 256
35
+ tgt_seq_length: 256
36
+
37
+ training:
38
+ # Run configuration
39
+ model_path: quickmt-vi-en-eole-model
40
+ keep_checkpoint: 4
41
+ train_steps: 200000
42
+ save_checkpoint_steps: 2000
43
+ valid_steps: 2000
44
+
45
+ # Train on a single GPU
46
+ world_size: 1
47
+ gpu_ranks: [0]
48
+
49
+ # Batching
50
+ batch_type: "tokens"
51
+ batch_size: 8000
52
+ valid_batch_size: 4096
53
+ batch_size_multiple: 8
54
+ accum_count: [8]
55
+ accum_steps: [0]
56
+
57
+ # Optimizer & Compute
58
+ compute_dtype: "fp16"
59
+ optim: "adamw"
60
+ #use_amp: False
61
+ learning_rate: 2.0
62
+ warmup_steps: 4000
63
+ decay_method: "noam"
64
+ adam_beta2: 0.998
65
+
66
+ # Data loading
67
+ bucket_size: 128000
68
+ num_workers: 4
69
+ prefetch_factor: 32
70
+
71
+ # Hyperparams
72
+ dropout_steps: [0]
73
+ dropout: [0.1]
74
+ attention_dropout: [0.1]
75
+ max_grad_norm: 0
76
+ label_smoothing: 0.1
77
+ average_decay: 0.0001
78
+ param_init_method: xavier_uniform
79
+ normalization: "tokens"
80
+
81
+ model:
82
+ architecture: "transformer"
83
+ share_embeddings: false
84
+ share_decoder_embeddings: false
85
+ hidden_size: 1024
86
+ encoder:
87
+ layers: 8
88
+ decoder:
89
+ layers: 2
90
+ heads: 8
91
+ transformer_ff: 4096
92
+ embeddings:
93
+ word_vec_size: 1024
94
+ position_encoding_type: "SinusoidalInterleaved"
95
+
eole-model/config.json ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "src_vocab": "vi.eole.vocab",
3
+ "share_vocab": false,
4
+ "report_every": 100,
5
+ "tensorboard": true,
6
+ "overwrite": true,
7
+ "seed": 1234,
8
+ "tensorboard_log_dir": "tensorboard",
9
+ "src_vocab_size": 20000,
10
+ "tgt_vocab": "en.eole.vocab",
11
+ "tensorboard_log_dir_dated": "tensorboard/Jul-09_09-03-58",
12
+ "vocab_size_multiple": 8,
13
+ "save_data": "data",
14
+ "valid_metrics": [
15
+ "BLEU"
16
+ ],
17
+ "tgt_vocab_size": 20000,
18
+ "n_sample": 0,
19
+ "transforms": [
20
+ "sentencepiece",
21
+ "filtertoolong"
22
+ ],
23
+ "training": {
24
+ "num_workers": 0,
25
+ "accum_steps": [
26
+ 0
27
+ ],
28
+ "valid_steps": 2000,
29
+ "decay_method": "noam",
30
+ "bucket_size": 128000,
31
+ "batch_size_multiple": 8,
32
+ "warmup_steps": 4000,
33
+ "param_init_method": "xavier_uniform",
34
+ "optim": "adamw",
35
+ "accum_count": [
36
+ 8
37
+ ],
38
+ "compute_dtype": "torch.float16",
39
+ "attention_dropout": [
40
+ 0.1
41
+ ],
42
+ "adam_beta2": 0.998,
43
+ "gpu_ranks": [
44
+ 0
45
+ ],
46
+ "label_smoothing": 0.1,
47
+ "dropout": [
48
+ 0.1
49
+ ],
50
+ "prefetch_factor": 32,
51
+ "world_size": 1,
52
+ "batch_type": "tokens",
53
+ "learning_rate": 2.0,
54
+ "keep_checkpoint": 4,
55
+ "average_decay": 0.0001,
56
+ "train_steps": 200000,
57
+ "save_checkpoint_steps": 2000,
58
+ "normalization": "tokens",
59
+ "batch_size": 8000,
60
+ "valid_batch_size": 4096,
61
+ "model_path": "quickmt-vi-en-eole-model",
62
+ "dropout_steps": [
63
+ 0
64
+ ],
65
+ "max_grad_norm": 0.0
66
+ },
67
+ "model": {
68
+ "hidden_size": 1024,
69
+ "share_decoder_embeddings": false,
70
+ "heads": 8,
71
+ "transformer_ff": 4096,
72
+ "position_encoding_type": "SinusoidalInterleaved",
73
+ "share_embeddings": false,
74
+ "architecture": "transformer",
75
+ "encoder": {
76
+ "layers": 8,
77
+ "hidden_size": 1024,
78
+ "heads": 8,
79
+ "transformer_ff": 4096,
80
+ "position_encoding_type": "SinusoidalInterleaved",
81
+ "src_word_vec_size": 1024,
82
+ "encoder_type": "transformer",
83
+ "n_positions": null
84
+ },
85
+ "decoder": {
86
+ "decoder_type": "transformer",
87
+ "layers": 2,
88
+ "hidden_size": 1024,
89
+ "heads": 8,
90
+ "transformer_ff": 4096,
91
+ "position_encoding_type": "SinusoidalInterleaved",
92
+ "tgt_word_vec_size": 1024,
93
+ "n_positions": null
94
+ },
95
+ "embeddings": {
96
+ "src_word_vec_size": 1024,
97
+ "word_vec_size": 1024,
98
+ "position_encoding_type": "SinusoidalInterleaved",
99
+ "tgt_word_vec_size": 1024
100
+ }
101
+ },
102
+ "transforms_configs": {
103
+ "sentencepiece": {
104
+ "src_subword_model": "${MODEL_PATH}/vi.spm.model",
105
+ "tgt_subword_model": "${MODEL_PATH}/en.spm.model"
106
+ },
107
+ "filtertoolong": {
108
+ "tgt_seq_length": 256,
109
+ "src_seq_length": 256
110
+ }
111
+ },
112
+ "data": {
113
+ "corpus_1": {
114
+ "path_src": "train.vi",
115
+ "path_tgt": "train.en",
116
+ "path_align": null,
117
+ "transforms": [
118
+ "sentencepiece",
119
+ "filtertoolong"
120
+ ]
121
+ },
122
+ "valid": {
123
+ "path_src": "valid.vi",
124
+ "path_tgt": "valid.en",
125
+ "path_align": null,
126
+ "transforms": [
127
+ "sentencepiece",
128
+ "filtertoolong"
129
+ ]
130
+ }
131
+ }
132
+ }
eole-model/en.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82efd76a945ec4574b2ab3d2476b0043a9737c8dbe693cd20a7fa036d273c0eb
3
+ size 586058
eole-model/model.00.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b7a913bf69c3e4008816ab744664912f35f3d95e22ab0bb9826df90805ae7b3
3
+ size 823882912
eole-model/vi.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03be7f771990d2bee00d7ff09219baad95b53fef1dcd387b3048c156d665e046
3
+ size 553521
eole-model/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf9297acc4339155f44430bdaf622700a3db2709de9d7ce4da6755ae5cacfb79
3
+ size 401699775
source_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
src.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03be7f771990d2bee00d7ff09219baad95b53fef1dcd387b3048c156d665e046
3
+ size 553521
target_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
tgt.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82efd76a945ec4574b2ab3d2476b0043a9737c8dbe693cd20a7fa036d273c0eb
3
+ size 586058