File size: 2,666 Bytes
30c78e9
e0f1dcb
 
 
 
 
 
 
 
 
 
 
30c78e9
 
e0f1dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: peft
license: apache-2.0
base_model: EleutherAI/pythia-2.8b
tags:
- base_model:adapter:EleutherAI/pythia-2.8b
- lora
- transformers
pipeline_tag: text-generation
model-index:
- name: pythia-2.8b-sft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pythia-2.8b-sft

This model is a fine-tuned version of [EleutherAI/pythia-2.8b](https://huggingface.co/EleutherAI/pythia-2.8b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6671

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8621        | 0.0442 | 100  | 1.7438          |
| 1.7909        | 0.0884 | 200  | 1.7135          |
| 1.7775        | 0.1327 | 300  | 1.7020          |
| 1.7587        | 0.1769 | 400  | 1.6937          |
| 1.7683        | 0.2211 | 500  | 1.6876          |
| 1.7488        | 0.2653 | 600  | 1.6824          |
| 1.7646        | 0.3096 | 700  | 1.6799          |
| 1.7557        | 0.3538 | 800  | 1.6776          |
| 1.7485        | 0.3980 | 900  | 1.6743          |
| 1.7368        | 0.4422 | 1000 | 1.6729          |
| 1.7298        | 0.4865 | 1100 | 1.6705          |
| 1.7525        | 0.5307 | 1200 | 1.6724          |
| 1.7386        | 0.5749 | 1300 | 1.6703          |
| 1.7325        | 0.6191 | 1400 | 1.6684          |
| 1.7306        | 0.6633 | 1500 | 1.6682          |
| 1.7262        | 0.7076 | 1600 | 1.6669          |
| 1.7333        | 0.7518 | 1700 | 1.6675          |
| 1.7318        | 0.7960 | 1800 | 1.6673          |
| 1.7293        | 0.8402 | 1900 | 1.6668          |
| 1.7326        | 0.8845 | 2000 | 1.6671          |
| 1.7378        | 0.9287 | 2100 | 1.6668          |
| 1.7259        | 0.9729 | 2200 | 1.6671          |


### Framework versions

- PEFT 0.17.0
- Transformers 4.55.0
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4