File size: 21,282 Bytes
3e7a3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
"""
RND1 model implementation.

This module implements the RND1 architecture with bidirectional attention for
diffusion-based language modeling. Includes support for Mixture of Experts (MoE)
with multiple backend options (HF, FlashInfer, SGLang).

Based on the Qwen3Moe architecture:
https://github.com/huggingface/transformers/blob/v4.57.0/src/transformers/models/qwen3_moe/modeling_qwen3_moe.py
"""

from __future__ import annotations

import os
from typing import Optional, Tuple, List, Union

import torch
from torch import nn

from transformers.utils import logging
from transformers.cache_utils import Cache
from transformers.modeling_outputs import (
    MoeModelOutputWithPast,
    MaskedLMOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.configuration_utils import PretrainedConfig
from transformers.generation import GenerationConfig

from .configuration_rnd import RND1Config
from .generation_utils import RND1GenerationMixin
from .generation_config import RND1GenerationConfig

from transformers.models.qwen3_moe.modeling_qwen3_moe import (
    Qwen3MoeConfig,
    Qwen3MoeRMSNorm,
    Qwen3MoeRotaryEmbedding,
    Qwen3MoeSparseMoeBlock,
    Qwen3MoeMLP,
    apply_rotary_pos_emb
)
import torch.nn.functional as F

try:
    import flashinfer.fused_moe as fused_moe
except Exception:
    fused_moe = None

try:
    from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_moe as sglang_fused_moe
    from sglang.srt.layers.moe.topk import StandardTopKOutput
except Exception:
    sglang_fused_moe = None
    StandardTopKOutput = None

logger = logging.get_logger(__name__)


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """Expand key/value heads to match query heads for grouped-query attention."""
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(
        batch, num_key_value_heads, n_rep, slen, head_dim
    )
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


class RND1Attention(nn.Module):
    """RND1 attention layer with bidirectional attention for diffusion modeling."""

    def __init__(self, config: RND1Config, layer_idx: int):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx

        self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
        self.num_heads = config.num_attention_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads

        self.scaling = self.head_dim ** -0.5
        self.attention_dropout = config.attention_dropout
        self.is_causal = False

        self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
        self.k_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
        self.v_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=config.attention_bias)

        self.q_norm = Qwen3MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps)
        self.k_norm = Qwen3MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps)

        self.sliding_window = getattr(config, "sliding_window", None)

        self.rotary_emb = Qwen3MoeRotaryEmbedding(config=config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, Tuple[torch.Tensor, torch.Tensor]]] = None,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        dual_cache: Optional[bool] = False,
        replace_position: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Union[Cache, Tuple[torch.Tensor, torch.Tensor]]]]:

        bsz, q_len, _ = hidden_states.size()
        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)
        
        query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
        key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)

        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        use_sdpa = (getattr(self.config, "_attn_implementation", "eager") == "sdpa")

        if use_sdpa:
            if attention_mask is not None and isinstance(attention_mask, torch.Tensor):
                if attention_mask.dtype not in [torch.bool, torch.float32, torch.float16, torch.bfloat16]:
                    attention_mask = attention_mask.to(dtype=query_states.dtype)
            
            assert not self.is_causal, f"Attention layer {self.layer_idx} is causal"
            attn_out = torch.nn.functional.scaled_dot_product_attention(
                query_states, key_states, value_states,
                attn_mask=attention_mask if isinstance(attention_mask, torch.Tensor) else None,
                dropout_p=self.attention_dropout if self.training else 0.0,
                is_causal=self.is_causal,
            )
            attn_out = attn_out.transpose(1, 2).contiguous()
            attn_out = attn_out.view(bsz, q_len, self.num_heads * self.head_dim)
            attn_out = self.o_proj(attn_out)
            return attn_out, None

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling

        if attention_mask is not None:
            attn_weights = attn_weights + attention_mask[:, :, :, : key_states.shape[-2]]

        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)

        attn_out = torch.matmul(attn_weights, value_states)
        attn_out = attn_out.transpose(1, 2).contiguous().view(hidden_states.size(0), hidden_states.size(1), -1)
        attn_out = self.o_proj(attn_out)

        return attn_out, None


class RND1DecoderLayer(nn.Module):
    """RND1 decoder layer with bidirectional attention for diffusion language modeling."""

    def __init__(self, config: RND1Config, layer_idx: int):
        super().__init__()
        self.self_attn = RND1Attention(config, layer_idx)
        self.mlp = RND1SparseMoeBlock(config)
        self.input_layernorm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        replace_position: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[torch.Tensor]]:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)

        attn_out, attn_weights = self.self_attn(
            hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            position_embeddings=position_embeddings,
            replace_position=replace_position,
        )
        hidden_states = residual + attn_out

        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        ff_out = self.mlp(hidden_states)
        if isinstance(ff_out, tuple):
            ff_out = ff_out[0]
        hidden_states = residual + ff_out

        return hidden_states, attn_weights


class RND1SparseMoeBlock(nn.Module):
    """RND1 Sparse MoE block with multiple backend support (HF, FlashInfer, SGLang)."""

    def __init__(self, config: RND1Config):
        super().__init__()
        self.config = config
        self.backend = getattr(config, "moe_backend", "hf")
        self.num_experts = config.num_experts
        self.top_k = config.num_experts_per_tok
        self.norm_topk_prob = config.norm_topk_prob
        self.hidden_size = config.hidden_size
        self.intermediate_size = getattr(config, "moe_intermediate_size", config.intermediate_size)

        self.gate = nn.Linear(self.hidden_size, self.num_experts, bias=False)
        self.experts = nn.ModuleList(
            [Qwen3MoeMLP(config, intermediate_size=self.intermediate_size) for _ in range(self.num_experts)]
        )

        # Cached weight tensors for optimized backends
        self._flashinfer_fc1_weights = None
        self._flashinfer_fc2_weights = None
        self._sglang_w1 = None
        self._sglang_w2 = None
        if self.backend == "sglang":
            if sglang_fused_moe is None or StandardTopKOutput is None:
                raise RuntimeError("sglang is not available, cannot use sglang backend")
        elif self.backend == "flashinfer":
            if fused_moe is None:
                raise RuntimeError("flashinfer is not available, cannot use flashinfer backend")

    def _initialize_flashinfer_weights(self):
        """Initialize FlashInfer-compatible weight format."""
        fc1_list = []
        fc2_list = []

        for expert in self.experts:
            gate_w = expert.gate_proj.weight  # [I, H]
            up_w = expert.up_proj.weight      # [I, H]
            down_w = expert.down_proj.weight  # [H, I]
            # FlashInfer expects [up; gate] ordering
            fc1_list.append(torch.cat([up_w, gate_w], dim=0))  # [2I, H]
            fc2_list.append(down_w)  # [H, I]

        self._flashinfer_fc1_weights = torch.stack(fc1_list, dim=0).contiguous()
        self._flashinfer_fc2_weights = torch.stack(fc2_list, dim=0).contiguous()

    def _initialize_sglang_weights(self):
        """Initialize SGLang-compatible weight format."""
        w1_list = []
        w2_list = []

        for expert in self.experts:
            gate_w = expert.gate_proj.weight  # [I, H]
            up_w = expert.up_proj.weight      # [I, H]
            down_w = expert.down_proj.weight  # [H, I]
            w1 = torch.cat([gate_w, up_w], dim=0)  # [2I, H]
            w1_list.append(w1)
            w2_list.append(down_w)

        self._sglang_w1 = torch.stack(w1_list, dim=0).contiguous()
        self._sglang_w2 = torch.stack(w2_list, dim=0).contiguous()

    def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """Forward pass with expert routing and computation."""
        batch_size, sequence_length, hidden_dim = hidden_states.shape
        x = hidden_states.view(-1, hidden_dim)

        # Expert routing
        router_logits = self.gate(x)
        routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
        routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
        if self.norm_topk_prob:
            routing_weights = routing_weights / routing_weights.sum(dim=-1, keepdim=True)

        if self.backend == "hf":
            final_hidden_states = torch.zeros(
                (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
            )

            expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
            expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()

            for expert_idx in expert_hit:
                expert_layer = self.experts[expert_idx]
                idx, top_x = torch.where(expert_mask[expert_idx].squeeze(0))
                current_state = x[top_x]
                current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
                final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
            out = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
            return out, router_logits.view(batch_size, sequence_length, -1)

        elif self.backend == "flashinfer":
            if self._flashinfer_fc1_weights is None or self._flashinfer_fc2_weights is None:
                self._initialize_flashinfer_weights()

            result = fused_moe.cutlass_fused_moe(
                input=x,
                token_selected_experts=selected_experts.to(torch.int),
                token_final_scales=routing_weights.to(torch.float32),
                fc1_expert_weights=self._flashinfer_fc1_weights,
                fc2_expert_weights=self._flashinfer_fc2_weights,
                output_dtype=x.dtype,
                quant_scales=None,
            )
            if isinstance(result, (list, tuple)):
                out_flat = result[0]
            else:
                out_flat = result
            out = out_flat.view(batch_size, sequence_length, hidden_dim)
            return out, router_logits.view(batch_size, sequence_length, -1)

        elif self.backend == "sglang":
            if self._sglang_w1 is None or self._sglang_w2 is None:
                self._initialize_sglang_weights()

            topk_output = StandardTopKOutput(
                topk_weights=routing_weights,
                topk_ids=selected_experts,
                router_logits=router_logits,
            )

            out_flat = sglang_fused_moe(
                hidden_states=x,
                w1=self._sglang_w1,
                w2=self._sglang_w2,
                topk_output=topk_output,
            )
            out = out_flat.view(batch_size, sequence_length, hidden_dim)
            return out, router_logits.view(batch_size, sequence_length, -1)

        else:
            raise ValueError(f"Invalid backend: {self.backend}")


class RND1PreTrainedModel(PreTrainedModel):
    """Base class for RND1 models with weight initialization and loading support."""
    config_class = RND1Config
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["RND1DecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = True

    def _init_weights(self, module):
        """Initialize weights using normal distribution."""
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: Optional[bool] = None,
        weights_only: bool = True,
        **kwargs,
    ):
        """Load pretrained model with generation config."""
        _model = super().from_pretrained(
            pretrained_model_name_or_path,
            *model_args,
            config=config,
            cache_dir=cache_dir,
            ignore_mismatched_sizes=ignore_mismatched_sizes,
            force_download=force_download,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            use_safetensors=use_safetensors,
            weights_only=weights_only,
            **kwargs,
        )
        
        resume_download = kwargs.get("resume_download", None)
        proxies = kwargs.get("proxies", None)
        subfolder = kwargs.get("subfolder", "")
        from_auto_class = kwargs.get("_from_auto", False)
        from_pipeline = kwargs.get("_from_pipeline", None)
        
        _model.generation_config = GenerationConfig.from_pretrained(
            pretrained_model_name_or_path,
            cache_dir=cache_dir,
            force_download=force_download,
            resume_download=resume_download,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            subfolder=subfolder,
            _from_auto=from_auto_class,
            _from_pipeline=from_pipeline,
        )
            
        return _model


class RND1Model(RND1PreTrainedModel):
    """RND1 transformer model with bidirectional attention for diffusion language modeling."""

    def __init__(self, config: RND1Config):
        super().__init__(config)

        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList([RND1DecoderLayer(config, i) for i in range(config.num_hidden_layers)])
        self.norm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        
        self.rotary_emb = Qwen3MoeRotaryEmbedding(config=config)

        self.post_init()


    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        **kwargs,
    ) -> MoeModelOutputWithPast:
        """Forward pass through the RND1 model."""

        if (input_ids is None) == (inputs_embeds is None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if position_ids is None:
            position_ids = torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device).unsqueeze(0)

        position_embeddings = self.rotary_emb(inputs_embeds, position_ids)

        hidden_states = inputs_embeds

        for layer in self.layers:
            hidden_states, _ = layer(
                hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                position_embeddings=position_embeddings,
            )

        hidden_states = self.norm(hidden_states)

        return MoeModelOutputWithPast(
            last_hidden_state=hidden_states,
            router_logits=None,
        )


class RND1LM(RND1PreTrainedModel, RND1GenerationMixin):
    """Radical Numerics Diffusion Language Model with bidirectional attention."""

    def __init__(self, config: RND1Config):
        super().__init__(config)
        self.model = RND1Model(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.post_init()

    def get_input_embeddings(self):
        """Get the input embeddings layer."""
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        """Set the input embeddings layer."""
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        """Get the output embeddings layer (lm_head)."""
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        """Set the output embeddings layer (lm_head)."""
        self.lm_head = new_embeddings

    @classmethod
    def can_generate(cls) -> bool:
        """Indicates this model can generate text."""
        return True

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> MaskedLMOutput:
        """Forward pass with optional loss computation."""
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            **kwargs,
        )
        logits = self.lm_head(outputs.last_hidden_state)

        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))

        return MaskedLMOutput(
            loss=loss,
            logits=logits,
        )