|
""" |
|
RND1 model implementation. |
|
|
|
This module implements the RND1 architecture with bidirectional attention for |
|
diffusion-based language modeling. Includes support for Mixture of Experts (MoE) |
|
with multiple backend options (HF, FlashInfer, SGLang). |
|
|
|
Based on the Qwen3Moe architecture: |
|
https://github.com/huggingface/transformers/blob/v4.57.0/src/transformers/models/qwen3_moe/modeling_qwen3_moe.py |
|
""" |
|
|
|
from __future__ import annotations |
|
|
|
import os |
|
from typing import Optional, Tuple, List, Union |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from transformers.utils import logging |
|
from transformers.cache_utils import Cache |
|
from transformers.modeling_outputs import ( |
|
MoeModelOutputWithPast, |
|
MaskedLMOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.generation import GenerationConfig |
|
|
|
from .configuration_rnd import RND1Config |
|
from .generation_utils import RND1GenerationMixin |
|
from .generation_config import RND1GenerationConfig |
|
|
|
from transformers.models.qwen3_moe.modeling_qwen3_moe import ( |
|
Qwen3MoeConfig, |
|
Qwen3MoeRMSNorm, |
|
Qwen3MoeRotaryEmbedding, |
|
Qwen3MoeSparseMoeBlock, |
|
Qwen3MoeMLP, |
|
apply_rotary_pos_emb |
|
) |
|
import torch.nn.functional as F |
|
|
|
try: |
|
import flashinfer.fused_moe as fused_moe |
|
except Exception: |
|
fused_moe = None |
|
|
|
try: |
|
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_moe as sglang_fused_moe |
|
from sglang.srt.layers.moe.topk import StandardTopKOutput |
|
except Exception: |
|
sglang_fused_moe = None |
|
StandardTopKOutput = None |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
"""Expand key/value heads to match query heads for grouped-query attention.""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand( |
|
batch, num_key_value_heads, n_rep, slen, head_dim |
|
) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class RND1Attention(nn.Module): |
|
"""RND1 attention layer with bidirectional attention for diffusion modeling.""" |
|
|
|
def __init__(self, config: RND1Config, layer_idx: int): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
|
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
self.num_heads = config.num_attention_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
|
|
self.scaling = self.head_dim ** -0.5 |
|
self.attention_dropout = config.attention_dropout |
|
self.is_causal = False |
|
|
|
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) |
|
self.k_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
self.v_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=config.attention_bias) |
|
|
|
self.q_norm = Qwen3MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
self.k_norm = Qwen3MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
|
self.sliding_window = getattr(config, "sliding_window", None) |
|
|
|
self.rotary_emb = Qwen3MoeRotaryEmbedding(config=config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[Cache, Tuple[torch.Tensor, torch.Tensor]]] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
dual_cache: Optional[bool] = False, |
|
replace_position: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Union[Cache, Tuple[torch.Tensor, torch.Tensor]]]]: |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
input_shape = hidden_states.shape[:-1] |
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
use_sdpa = (getattr(self.config, "_attn_implementation", "eager") == "sdpa") |
|
|
|
if use_sdpa: |
|
if attention_mask is not None and isinstance(attention_mask, torch.Tensor): |
|
if attention_mask.dtype not in [torch.bool, torch.float32, torch.float16, torch.bfloat16]: |
|
attention_mask = attention_mask.to(dtype=query_states.dtype) |
|
|
|
assert not self.is_causal, f"Attention layer {self.layer_idx} is causal" |
|
attn_out = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, key_states, value_states, |
|
attn_mask=attention_mask if isinstance(attention_mask, torch.Tensor) else None, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
is_causal=self.is_causal, |
|
) |
|
attn_out = attn_out.transpose(1, 2).contiguous() |
|
attn_out = attn_out.view(bsz, q_len, self.num_heads * self.head_dim) |
|
attn_out = self.o_proj(attn_out) |
|
return attn_out, None |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling |
|
|
|
if attention_mask is not None: |
|
attn_weights = attn_weights + attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
|
|
attn_out = torch.matmul(attn_weights, value_states) |
|
attn_out = attn_out.transpose(1, 2).contiguous().view(hidden_states.size(0), hidden_states.size(1), -1) |
|
attn_out = self.o_proj(attn_out) |
|
|
|
return attn_out, None |
|
|
|
|
|
class RND1DecoderLayer(nn.Module): |
|
"""RND1 decoder layer with bidirectional attention for diffusion language modeling.""" |
|
|
|
def __init__(self, config: RND1Config, layer_idx: int): |
|
super().__init__() |
|
self.self_attn = RND1Attention(config, layer_idx) |
|
self.mlp = RND1SparseMoeBlock(config) |
|
self.input_layernorm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
replace_position: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[torch.Tensor]]: |
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
attn_out, attn_weights = self.self_attn( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
position_embeddings=position_embeddings, |
|
replace_position=replace_position, |
|
) |
|
hidden_states = residual + attn_out |
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
ff_out = self.mlp(hidden_states) |
|
if isinstance(ff_out, tuple): |
|
ff_out = ff_out[0] |
|
hidden_states = residual + ff_out |
|
|
|
return hidden_states, attn_weights |
|
|
|
|
|
class RND1SparseMoeBlock(nn.Module): |
|
"""RND1 Sparse MoE block with multiple backend support (HF, FlashInfer, SGLang).""" |
|
|
|
def __init__(self, config: RND1Config): |
|
super().__init__() |
|
self.config = config |
|
self.backend = getattr(config, "moe_backend", "hf") |
|
self.num_experts = config.num_experts |
|
self.top_k = config.num_experts_per_tok |
|
self.norm_topk_prob = config.norm_topk_prob |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = getattr(config, "moe_intermediate_size", config.intermediate_size) |
|
|
|
self.gate = nn.Linear(self.hidden_size, self.num_experts, bias=False) |
|
self.experts = nn.ModuleList( |
|
[Qwen3MoeMLP(config, intermediate_size=self.intermediate_size) for _ in range(self.num_experts)] |
|
) |
|
|
|
|
|
self._flashinfer_fc1_weights = None |
|
self._flashinfer_fc2_weights = None |
|
self._sglang_w1 = None |
|
self._sglang_w2 = None |
|
if self.backend == "sglang": |
|
if sglang_fused_moe is None or StandardTopKOutput is None: |
|
raise RuntimeError("sglang is not available, cannot use sglang backend") |
|
elif self.backend == "flashinfer": |
|
if fused_moe is None: |
|
raise RuntimeError("flashinfer is not available, cannot use flashinfer backend") |
|
|
|
def _initialize_flashinfer_weights(self): |
|
"""Initialize FlashInfer-compatible weight format.""" |
|
fc1_list = [] |
|
fc2_list = [] |
|
|
|
for expert in self.experts: |
|
gate_w = expert.gate_proj.weight |
|
up_w = expert.up_proj.weight |
|
down_w = expert.down_proj.weight |
|
|
|
fc1_list.append(torch.cat([up_w, gate_w], dim=0)) |
|
fc2_list.append(down_w) |
|
|
|
self._flashinfer_fc1_weights = torch.stack(fc1_list, dim=0).contiguous() |
|
self._flashinfer_fc2_weights = torch.stack(fc2_list, dim=0).contiguous() |
|
|
|
def _initialize_sglang_weights(self): |
|
"""Initialize SGLang-compatible weight format.""" |
|
w1_list = [] |
|
w2_list = [] |
|
|
|
for expert in self.experts: |
|
gate_w = expert.gate_proj.weight |
|
up_w = expert.up_proj.weight |
|
down_w = expert.down_proj.weight |
|
w1 = torch.cat([gate_w, up_w], dim=0) |
|
w1_list.append(w1) |
|
w2_list.append(down_w) |
|
|
|
self._sglang_w1 = torch.stack(w1_list, dim=0).contiguous() |
|
self._sglang_w2 = torch.stack(w2_list, dim=0).contiguous() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Forward pass with expert routing and computation.""" |
|
batch_size, sequence_length, hidden_dim = hidden_states.shape |
|
x = hidden_states.view(-1, hidden_dim) |
|
|
|
|
|
router_logits = self.gate(x) |
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) |
|
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) |
|
if self.norm_topk_prob: |
|
routing_weights = routing_weights / routing_weights.sum(dim=-1, keepdim=True) |
|
|
|
if self.backend == "hf": |
|
final_hidden_states = torch.zeros( |
|
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device |
|
) |
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) |
|
expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero() |
|
|
|
for expert_idx in expert_hit: |
|
expert_layer = self.experts[expert_idx] |
|
idx, top_x = torch.where(expert_mask[expert_idx].squeeze(0)) |
|
current_state = x[top_x] |
|
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] |
|
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) |
|
out = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) |
|
return out, router_logits.view(batch_size, sequence_length, -1) |
|
|
|
elif self.backend == "flashinfer": |
|
if self._flashinfer_fc1_weights is None or self._flashinfer_fc2_weights is None: |
|
self._initialize_flashinfer_weights() |
|
|
|
result = fused_moe.cutlass_fused_moe( |
|
input=x, |
|
token_selected_experts=selected_experts.to(torch.int), |
|
token_final_scales=routing_weights.to(torch.float32), |
|
fc1_expert_weights=self._flashinfer_fc1_weights, |
|
fc2_expert_weights=self._flashinfer_fc2_weights, |
|
output_dtype=x.dtype, |
|
quant_scales=None, |
|
) |
|
if isinstance(result, (list, tuple)): |
|
out_flat = result[0] |
|
else: |
|
out_flat = result |
|
out = out_flat.view(batch_size, sequence_length, hidden_dim) |
|
return out, router_logits.view(batch_size, sequence_length, -1) |
|
|
|
elif self.backend == "sglang": |
|
if self._sglang_w1 is None or self._sglang_w2 is None: |
|
self._initialize_sglang_weights() |
|
|
|
topk_output = StandardTopKOutput( |
|
topk_weights=routing_weights, |
|
topk_ids=selected_experts, |
|
router_logits=router_logits, |
|
) |
|
|
|
out_flat = sglang_fused_moe( |
|
hidden_states=x, |
|
w1=self._sglang_w1, |
|
w2=self._sglang_w2, |
|
topk_output=topk_output, |
|
) |
|
out = out_flat.view(batch_size, sequence_length, hidden_dim) |
|
return out, router_logits.view(batch_size, sequence_length, -1) |
|
|
|
else: |
|
raise ValueError(f"Invalid backend: {self.backend}") |
|
|
|
|
|
class RND1PreTrainedModel(PreTrainedModel): |
|
"""Base class for RND1 models with weight initialization and loading support.""" |
|
config_class = RND1Config |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["RND1DecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
_supports_quantized_cache = True |
|
_supports_static_cache = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize weights using normal distribution.""" |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], |
|
*model_args, |
|
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
ignore_mismatched_sizes: bool = False, |
|
force_download: bool = False, |
|
local_files_only: bool = False, |
|
token: Optional[Union[str, bool]] = None, |
|
revision: str = "main", |
|
use_safetensors: Optional[bool] = None, |
|
weights_only: bool = True, |
|
**kwargs, |
|
): |
|
"""Load pretrained model with generation config.""" |
|
_model = super().from_pretrained( |
|
pretrained_model_name_or_path, |
|
*model_args, |
|
config=config, |
|
cache_dir=cache_dir, |
|
ignore_mismatched_sizes=ignore_mismatched_sizes, |
|
force_download=force_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
use_safetensors=use_safetensors, |
|
weights_only=weights_only, |
|
**kwargs, |
|
) |
|
|
|
resume_download = kwargs.get("resume_download", None) |
|
proxies = kwargs.get("proxies", None) |
|
subfolder = kwargs.get("subfolder", "") |
|
from_auto_class = kwargs.get("_from_auto", False) |
|
from_pipeline = kwargs.get("_from_pipeline", None) |
|
|
|
_model.generation_config = GenerationConfig.from_pretrained( |
|
pretrained_model_name_or_path, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
_from_auto=from_auto_class, |
|
_from_pipeline=from_pipeline, |
|
) |
|
|
|
return _model |
|
|
|
|
|
class RND1Model(RND1PreTrainedModel): |
|
"""RND1 transformer model with bidirectional attention for diffusion language modeling.""" |
|
|
|
def __init__(self, config: RND1Config): |
|
super().__init__(config) |
|
|
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList([RND1DecoderLayer(config, i) for i in range(config.num_hidden_layers)]) |
|
self.norm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.rotary_emb = Qwen3MoeRotaryEmbedding(config=config) |
|
|
|
self.post_init() |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
**kwargs, |
|
) -> MoeModelOutputWithPast: |
|
"""Forward pass through the RND1 model.""" |
|
|
|
if (input_ids is None) == (inputs_embeds is None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if position_ids is None: |
|
position_ids = torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device).unsqueeze(0) |
|
|
|
position_embeddings = self.rotary_emb(inputs_embeds, position_ids) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
for layer in self.layers: |
|
hidden_states, _ = layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
position_embeddings=position_embeddings, |
|
) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
return MoeModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
router_logits=None, |
|
) |
|
|
|
|
|
class RND1LM(RND1PreTrainedModel, RND1GenerationMixin): |
|
"""Radical Numerics Diffusion Language Model with bidirectional attention.""" |
|
|
|
def __init__(self, config: RND1Config): |
|
super().__init__(config) |
|
self.model = RND1Model(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
"""Get the input embeddings layer.""" |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
"""Set the input embeddings layer.""" |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
"""Get the output embeddings layer (lm_head).""" |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
"""Set the output embeddings layer (lm_head).""" |
|
self.lm_head = new_embeddings |
|
|
|
@classmethod |
|
def can_generate(cls) -> bool: |
|
"""Indicates this model can generate text.""" |
|
return True |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> MaskedLMOutput: |
|
"""Forward pass with optional loss computation.""" |
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
**kwargs, |
|
) |
|
logits = self.lm_head(outputs.last_hidden_state) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1)) |
|
|
|
return MaskedLMOutput( |
|
loss=loss, |
|
logits=logits, |
|
) |
|
|