File size: 2,756 Bytes
c33ff65 4e9bf4e 0e6bfce 4e9bf4e c33ff65 b6add17 0e6bfce 4e9bf4e c33ff65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: ratish/DBERT_CleanDesc_v2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# ratish/DBERT_CleanDesc_v2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0738
- Validation Loss: 0.6606
- Train Accuracy: 0.85
- Epoch: 18
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 6180, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 2.2247 | 2.0414 | 0.375 | 0 |
| 1.6722 | 1.6034 | 0.575 | 1 |
| 1.2412 | 1.3270 | 0.6 | 2 |
| 0.9495 | 1.0999 | 0.6 | 3 |
| 0.7464 | 0.9892 | 0.65 | 4 |
| 0.6087 | 0.8445 | 0.75 | 5 |
| 0.4628 | 0.8918 | 0.7 | 6 |
| 0.3747 | 0.7971 | 0.775 | 7 |
| 0.3069 | 0.7776 | 0.75 | 8 |
| 0.2492 | 0.6877 | 0.825 | 9 |
| 0.2148 | 0.7085 | 0.8 | 10 |
| 0.1793 | 0.6896 | 0.85 | 11 |
| 0.1598 | 0.7230 | 0.85 | 12 |
| 0.1308 | 0.7365 | 0.85 | 13 |
| 0.1211 | 0.6985 | 0.85 | 14 |
| 0.1023 | 0.6592 | 0.85 | 15 |
| 0.0892 | 0.6621 | 0.85 | 16 |
| 0.0885 | 0.6387 | 0.85 | 17 |
| 0.0738 | 0.6606 | 0.85 | 18 |
### Framework versions
- Transformers 4.27.4
- TensorFlow 2.12.0
- Datasets 2.11.0
- Tokenizers 0.13.3
|