Upload folder using huggingface_hub
Browse files- LICENSE +21 -0
- README.md +189 -0
- config.json +37 -0
- figures/XHSlong750px.png +0 -0
- figures/new_logo.png +3 -0
- figures/performance.png +3 -0
- figures/wechat.png +3 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- model.safetensors.index.json +0 -0
- tokenizer.json +0 -0
- tokenizer_config.json +144 -0
- vocab.json +0 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2025 rednote-hilab
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
license_link: https://huggingface.co/rednote-hilab/dots.llm1.base/blob/main/LICENSE
|
4 |
+
library_name: transformers
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- zh
|
8 |
+
---
|
9 |
+
|
10 |
+
# dots1
|
11 |
+
|
12 |
+
<p align="center">
|
13 |
+
<img src="figures/new_logo.png" width="200"/>
|
14 |
+
<p>
|
15 |
+
|
16 |
+
<p align="center">
|
17 |
+
  🤗 <a href="https://huggingface.co/rednote-hilab">Hugging Face</a>   |    📑 <a href="https://github.com/rednote-hilab/dots.llm1/blob/main/dots1_tech_report.pdf">Paper</a>   
|
18 |
+
<br>
|
19 |
+
🖥️ <a href="https://huggingface.co/spaces/rednote-hilab/dots-demo">Demo</a>   |   💬 <a href="figures/wechat.png">WeChat (微信)</a>   |   📕 <a href="https://www.xiaohongshu.com/user/profile/683ffe42000000001d021a4c">rednote</a>  
|
20 |
+
</p>
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
Visit our Hugging Face (click links above), search checkpoints with names starting with `dots.llm1` or visit the [dots1 collection](https://huggingface.co/collections/rednote-hilab/dotsllm1-68246aaaaba3363374a8aa7c), and you will find all you need! Enjoy!
|
26 |
+
|
27 |
+
|
28 |
+
## News
|
29 |
+
|
30 |
+
- 2025.06.06: We released the `dots.llm1` series. Check our [report](https://github.com/rednote-hilab/dots.llm1/blob/main/dots1_tech_report.pdf) for more details!
|
31 |
+
|
32 |
+
|
33 |
+
## 1. Introduction
|
34 |
+
|
35 |
+
|
36 |
+
The `dots.llm1` model is a large-scale MoE model that activates 14B parameters out of a total of 142B parameters, delivering performance on par with state-of-the-art models.
|
37 |
+
Leveraging our meticulously crafted and efficient data processing pipeline, `dots.llm1` achieves performance comparable to Qwen2.5-72B after pretrained on 11.2T high-quality tokens without synthetic data. To foster further research, we open-source intermediate training checkpoints at every one trillion tokens, providing valuable insights into the learning dynamics of large language models.
|
38 |
+
|
39 |
+
|
40 |
+
<p align="center">
|
41 |
+
<img width="90%" src="./figures/performance.png">
|
42 |
+
</p>
|
43 |
+
|
44 |
+
## 2. Model Summary
|
45 |
+
|
46 |
+
**This repo contains the base and instruction-tuned `dots.llm1` model**. which has the following features:
|
47 |
+
|
48 |
+
- Type: A MoE model with 14B activated and 142B total parameters trained on 11.2T tokens.
|
49 |
+
- Training Stages: Pretraining and SFT.
|
50 |
+
- Architecture: Multi-head Attention with QK-Norm in attention Layer, fine-grained MoE utilizing top-6 out of 128 routed experts, plus 2 shared experts.
|
51 |
+
- Number of Layers: 62
|
52 |
+
- Number of Attention Heads: 32
|
53 |
+
- Supported Languages: English, Chinese
|
54 |
+
- Context Length: 32,768 tokens
|
55 |
+
- License: MIT
|
56 |
+
|
57 |
+
The highlights from `dots.llm1` include:
|
58 |
+
|
59 |
+
- **Enhanced Data Processing**: We propose a scalable and fine-grained *three-stage* data processing framework designed to generate large-scale, high-quality and diverse data for pretraining.
|
60 |
+
- **No Synthetic Data during Pretraining**: *11.2 trillion* high-quality non-synthetic tokens was used in base model pretraining.
|
61 |
+
- **Performance and Cost Efficiency**: `dots.llm1` is an open-source model that activates only *14B* parameters at inference, delivering both comprehensive capabilities and high computational efficiency.
|
62 |
+
- **Infrastructure**: We introduce an innovative MoE all-to-all communication and computation overlapping recipe based on interleaved 1F1B pipeline scheduling and an efficient grouped GEMM implementation to boost computational efficiency.
|
63 |
+
- **Open Accessibility to Model Dynamics**: Intermediate model checkpoints for *every 1T tokens* trained are released, facilitating future research into the learning dynamics of large language models.
|
64 |
+
|
65 |
+
## 3. Example Usage
|
66 |
+
|
67 |
+
### Model Downloads
|
68 |
+
|
69 |
+
<div align="center">
|
70 |
+
|
71 |
+
| **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download Link** |
|
72 |
+
| :------------: | :------------: | :------------: | :------------: | :------------: |
|
73 |
+
| dots.llm1.base | 142B | 14B | 32K | [🤗 Hugging Face](https://huggingface.co/rednote-hilab/dots.llm1.base) |
|
74 |
+
| dots.llm1.inst | 142B | 14B | 32K | [🤗 Hugging Face](https://huggingface.co/rednote-hilab/dots.llm1.inst) |
|
75 |
+
|
76 |
+
</div>
|
77 |
+
|
78 |
+
### Docker (recommended)
|
79 |
+
|
80 |
+
|
81 |
+
The docker images are available on [Docker Hub](https://hub.docker.com/repository/docker/rednotehilab/dots1/tags), based on the official images.
|
82 |
+
|
83 |
+
You can start a server via vllm.
|
84 |
+
|
85 |
+
```shell
|
86 |
+
docker run --gpus all \
|
87 |
+
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
88 |
+
-p 8000:8000 \
|
89 |
+
--ipc=host \
|
90 |
+
rednotehilab/dots1:vllm-openai-v0.9.0.1 \
|
91 |
+
--model rednote-hilab/dots.llm1.inst \
|
92 |
+
--tensor-parallel-size 8 \
|
93 |
+
--trust-remote-code \
|
94 |
+
--served-model-name dots1
|
95 |
+
```
|
96 |
+
|
97 |
+
Then you can verify whether the model is running successfully in the following way.
|
98 |
+
|
99 |
+
```shell
|
100 |
+
curl http://localhost:8000/v1/chat/completions \
|
101 |
+
-H "Content-Type: application/json" \
|
102 |
+
-d '{
|
103 |
+
"model": "dots1",
|
104 |
+
"messages": [
|
105 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
106 |
+
{"role": "user", "content": "Who won the world series in 2020?"}
|
107 |
+
],
|
108 |
+
"max_tokens": 32,
|
109 |
+
"temperature": 0
|
110 |
+
}'
|
111 |
+
```
|
112 |
+
|
113 |
+
|
114 |
+
### Inference with huggingface
|
115 |
+
|
116 |
+
#### Text Completion
|
117 |
+
|
118 |
+
```python
|
119 |
+
import torch
|
120 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
121 |
+
|
122 |
+
model_name = "rednote-hilab/dots.llm1.base"
|
123 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
124 |
+
|
125 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager")
|
126 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
127 |
+
|
128 |
+
text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
|
129 |
+
inputs = tokenizer(text, return_tensors="pt")
|
130 |
+
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
|
131 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
132 |
+
print(result)
|
133 |
+
```
|
134 |
+
|
135 |
+
#### Chat Completion
|
136 |
+
|
137 |
+
```python
|
138 |
+
import torch
|
139 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
140 |
+
|
141 |
+
model_name = "rednote-hilab/dots.llm1.inst"
|
142 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
143 |
+
|
144 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager")
|
145 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
146 |
+
|
147 |
+
messages = [
|
148 |
+
{"role": "user", "content": "Write a piece of quicksort code in C++"}
|
149 |
+
]
|
150 |
+
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
151 |
+
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=200)
|
152 |
+
|
153 |
+
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
|
154 |
+
print(result)
|
155 |
+
```
|
156 |
+
|
157 |
+
|
158 |
+
### Inference with sglang
|
159 |
+
[SGLang](https://github.com/sgl-project/sglang) is a fast serving framework for large language models and vision language models. SGLang could be used to launch a server with OpenAI-compatible API service. `sglang>=***` is required. It is as easy as
|
160 |
+
|
161 |
+
```shell
|
162 |
+
python -m sglang.launch_server --model-path dots.llm1.inst --tp 8 --host 0.0.0.0 --port 8000
|
163 |
+
```
|
164 |
+
An OpenAI-compatible API will be available at `http://localhost:8000/v1`.
|
165 |
+
|
166 |
+
### Inference with vllm
|
167 |
+
[vLLM](https://github.com/vllm-project/vllm) is a high-throughput and memory-efficient inference and serving engine for LLMs. `vllm>=***` is recommended.
|
168 |
+
|
169 |
+
```shell
|
170 |
+
vllm serve dots.llm1.inst --port 8000 --tensor-parallel-size 8
|
171 |
+
```
|
172 |
+
An OpenAI-compatible API will be available at `http://localhost:8000/v1`.
|
173 |
+
|
174 |
+
## 4. Evaluation Results
|
175 |
+
|
176 |
+
Detailed evaluation results are reported in this [📑 report](https://github.com/rednote-hilab/dots.llm1/blob/main/dots1_tech_report.pdf).
|
177 |
+
|
178 |
+
## Citation
|
179 |
+
|
180 |
+
If you find `dots.llm1` is useful or want to use in your projects, please kindly cite our paper:
|
181 |
+
|
182 |
+
```
|
183 |
+
@article{dots1,
|
184 |
+
title={dots.llm1 Technical Report},
|
185 |
+
author={rednote-hilab},
|
186 |
+
journal={arXiv preprint arXiv:TBD},
|
187 |
+
year={2025}
|
188 |
+
}
|
189 |
+
```
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Dots1ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": null,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"first_k_dense_replace": 1,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 4096,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 10944,
|
14 |
+
"max_position_embeddings": 32768,
|
15 |
+
"model_type": "dots1",
|
16 |
+
"moe_intermediate_size": 1408,
|
17 |
+
"moe_layer_freq": 1,
|
18 |
+
"n_routed_experts": 128,
|
19 |
+
"n_shared_experts": 2,
|
20 |
+
"norm_topk_prob": true,
|
21 |
+
"num_attention_heads": 32,
|
22 |
+
"num_experts_per_tok": 6,
|
23 |
+
"num_hidden_layers": 62,
|
24 |
+
"num_key_value_heads": 32,
|
25 |
+
"pretraining_tp": 1,
|
26 |
+
"rms_norm_eps": 1e-05,
|
27 |
+
"rope_scaling": null,
|
28 |
+
"rope_theta": 10000000,
|
29 |
+
"routed_scaling_factor": 2.5,
|
30 |
+
"sliding_window": null,
|
31 |
+
"tie_word_embeddings": false,
|
32 |
+
"torch_dtype": "bfloat16",
|
33 |
+
"transformers_version": "4.46.3",
|
34 |
+
"use_cache": true,
|
35 |
+
"use_sliding_window": false,
|
36 |
+
"vocab_size": 152064
|
37 |
+
}
|
figures/XHSlong750px.png
ADDED
![]() |
figures/new_logo.png
ADDED
![]() |
Git LFS Details
|
figures/performance.png
ADDED
![]() |
Git LFS Details
|
figures/wechat.png
ADDED
![]() |
Git LFS Details
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": null,
|
4 |
+
"eos_token_id": 151643,
|
5 |
+
"transformers_version": "4.46.3"
|
6 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<|userprompt|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"151647": {
|
37 |
+
"content": "<|endofuserprompt|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"151648": {
|
45 |
+
"content": "<|response|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"151649": {
|
53 |
+
"content": "<|endofresponse|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"151650": {
|
61 |
+
"content": "<|system|>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"151651": {
|
69 |
+
"content": "<|endofsystem|>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"151652": {
|
77 |
+
"content": "<|observation|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"151653": {
|
85 |
+
"content": "<|endofobservation|>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"151654": {
|
93 |
+
"content": "<|execution|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"151655": {
|
101 |
+
"content": "<|endofexecution|>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"151656": {
|
109 |
+
"content": "<|reject-unknown|>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"151657": {
|
117 |
+
"content": "<|sec-cot|>",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"151658": {
|
125 |
+
"content": "<|sec-end-cot|>",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
}
|
132 |
+
},
|
133 |
+
"additional_special_tokens": ["<|im_start|>", "<|im_end|>", "<|userprompt|>", "<|endofuserprompt|>", "<|response|>", "<|endofresponse|>", "<|system|>", "<|endofsystem|>", "<|observation|>", "<|endofobservation|>", "<|execution|>", "<|endofexecution|>", "<|reject-unknown|>", "<|sec-cot|>", "<|sec-end-cot|>"],
|
134 |
+
"bos_token": null,
|
135 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}<|system|>{{ messages[0]['content'] }}<|endofsystem|>{% set start_idx = 1 %}{% else %}<|system|><|endofsystem|>{% set start_idx = 0 %}{% endif %}{% for idx in range(start_idx, messages|length) %}{% if messages[idx]['role'] == 'user' %}<|userprompt|>{{ messages[idx]['content'] }}<|endofuserprompt|>{% elif messages[idx]['role'] == 'assistant' %}<|response|>{{ messages[idx]['content'] }}<|endofresponse|>{% endif %}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] == 'user' %}<|response|>{% endif %}",
|
136 |
+
"clean_up_tokenization_spaces": false,
|
137 |
+
"eos_token": "<|endoftext|>",
|
138 |
+
"errors": "replace",
|
139 |
+
"model_max_length": 32768,
|
140 |
+
"pad_token": "<|endoftext|>",
|
141 |
+
"split_special_tokens": false,
|
142 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
143 |
+
"unk_token": null
|
144 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|