--- license: mit license_link: https://huggingface.co/rednote-hilab/dots.llm1.inst/blob/main/LICENSE pipeline_tag: text-generation base_model: rednote-hilab/dots.llm1.base tags: - chat library_name: transformers language: - en - zh --- # dots1 ## 1. Introduction `dots.llm1` is a large-scale MoE model that activates 14B parameters out of a total of 142B parameters, delivering performance on par with state-of-the-art models while reducing training and inference costs. Leveraging our meticulously crafted and efficient data processing pipeline, `dots.llm1` achieves performance comparable to Qwen2.5-72B when trained on 11.2T high-quality tokens without synthetic data. To foster further research, we open-source intermediate training checkpoints at every one trillion tokens, providing valuable insights into the learning dynamics of large language models.

## 2. Model Summary **This repo contains the base and instruction-tuned `dots.llm1` model**. which has the following features: - Type: A 14B/142B MoE model trained on 11.2T tokens. - Training Stage: Pretraining & Post-training - Architecture: Multi-head Attention with QK-Norm in Attention Layer, fine-grained MoE utilizing top-6 out of 128 routed experts, plus 2 shared experts. - Number of Layers: 62 - Number of Attention Heads: 32 - Context Length: 32,768 tokens - License: MIT For more details, please refer to our [report](dots1_tech_report.pdf). ## 3. Example Usage ### Model Downloads
| **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download Link** | | :------------: | :------------: | :------------: | :------------: | :------------: | | dots.llm1.base | 142B | 14B | 32K | [🤗 Hugging Face](https://huggingface.co/rednote-hilab/dots.llm1.base) | | dots.llm1.inst | 142B | 14B | 32K | [🤗 Hugging Face](https://huggingface.co/rednote-hilab/dots.llm1.inst) |
### Inference with huggingface #### Text Completion ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig model_name = "rednote-hilab/dots.llm1.base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager") model.generation_config = GenerationConfig.from_pretrained(model_name) text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs.to(model.device), max_new_tokens=100) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` #### Chat Completion ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig model_name = "rednote-hilab/dots.llm1.inst" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager") model.generation_config = GenerationConfig.from_pretrained(model_name) messages = [ {"role": "user", "content": "Write a piece of quicksort code in C++"} ] input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") outputs = model.generate(input_tensor.to(model.device), max_new_tokens=200) result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) print(result) ``` ### Inference with sglang [SGLang](https://github.com/sgl-project/sglang) is a fast serving framework for large language models and vision language models. SGLang could be used to launch a server with OpenAI-compatible API service. `sglang>=***` is required. It is as easy as ```shell python -m sglang.launch_server --model-path dots.llm1.inst --tp 8 --host 0.0.0.0 --port 8000 ``` An OpenAI-compatible API will be available at `http://localhost:8000/v1`. ### Inference with vllm [vLLM](https://github.com/vllm-project/vllm) is a high-throughput and memory-efficient inference and serving engine for LLMs. `vllm>=***` is recommended. ```shell vllm serve dots.llm1.inst --port 8000 --tensor-parallel-size 8 ``` An OpenAI-compatible API will be available at `http://localhost:8000/v1`. ## 4. Evaluation Results Detailed evaluation results are reported in this [📑 report](dots1_tech_report.pdf). ## Citation If you find `dots.llm1` is useful or want to use in your projects, please kindly cite our paper: ``` @article{dots1, title={dots.llm1 Technical Report}, author={rednote-hilab}, journal={arXiv preprint arXiv:TBD}, year={2025} } ```