File size: 1,837 Bytes
5a93c7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e793bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from flask import Flask, render_template, request
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

app = Flask(__name__)

# Load fine-tuned model and tokenizer
model_path = "./finetuned_codegen"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float32)

# Set padding token
tokenizer.pad_token = tokenizer.eos_token

# Move model to CPU
device = torch.device("cpu")
model.to(device)

@app.route("/", methods=["GET", "POST"])
def index():
    generated_code = ""
    prompt = ""
    if request.method == "POST":
        prompt = request.form["prompt"]
        inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device)
        outputs = model.generate(
            **inputs,
            max_length=200,
            num_return_sequences=1,
            pad_token_id=tokenizer.eos_token_id,
            do_sample=True,
            temperature=0.2,  # Lower temperature for more precise outputs
            top_p=0.95,      # Adjusted for better sampling
            top_k=50,        # Added to focus on top-k tokens
            no_repeat_ngram_size=3  # Prevent repetitive phrases
        )
        generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
        # Clean up output to remove prompt prefix and extra text
        if generated_code.startswith(prompt):
            generated_code = generated_code[len(prompt):].strip()
        # Remove any trailing or redundant text
        generated_code = generated_code.split("\n")[0].strip() if "\n" in generated_code else generated_code
    return render_template("index.html", generated_code=generated_code, prompt=prompt)

if __name__ == "__main__":
    app.run(debug=True)