from flask import Flask, render_template, request import torch from transformers import AutoTokenizer, AutoModelForCausalLM app = Flask(__name__) # Load fine-tuned model and tokenizer model_path = "./finetuned_codegen" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float32) # Set padding token tokenizer.pad_token = tokenizer.eos_token # Move model to CPU device = torch.device("cpu") model.to(device) @app.route("/", methods=["GET", "POST"]) def index(): generated_code = "" prompt = "" if request.method == "POST": prompt = request.form["prompt"] inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device) outputs = model.generate( **inputs, max_length=200, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id, do_sample=True, temperature=0.2, # Lower temperature for more precise outputs top_p=0.95, # Adjusted for better sampling top_k=50, # Added to focus on top-k tokens no_repeat_ngram_size=3 # Prevent repetitive phrases ) generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) # Clean up output to remove prompt prefix and extra text if generated_code.startswith(prompt): generated_code = generated_code[len(prompt):].strip() # Remove any trailing or redundant text generated_code = generated_code.split("\n")[0].strip() if "\n" in generated_code else generated_code return render_template("index.html", generated_code=generated_code, prompt=prompt) if __name__ == "__main__": app.run(debug=True)