--- library_name: residuals base_model: Qwen/Qwen2.5-3B base_model_relation: adapter instruct_model: Qwen/Qwen2.5-3B-Instruct pipeline_tag: text-generation tags: - residuals - delta - task-arithmetic - finetune --- # Instruction Residuals This repository contains instruction residuals (delta weights) computed as the parameter-wise difference between `Qwen/Qwen2.5-3B-Instruct` and `Qwen/Qwen2.5-3B`. Apply these residuals to the base model to reconstruct the instruction-tuned weights without retraining. ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from residuals import Residuals base = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-3B") tok = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-3B") res = Residuals.from_pretrained("residuals/qwen2.5-3b") res.apply(base, base_tokenizer=tok) ``` ## Provenance - **Created at**: 2025-10-25T16:05:19.565132+00:00 - **DType**: float32 - **Parameters**: 435 - **Shapes hash**: 0270b462a2c7458fba25bc5be97a2b6d6e03eb11e573c8f621387231afa4791d - **Names hash**: 05a2495a9fd8df03da07f3407419e4bc7e10cd0baaf571b25d9e1fb0e6812a46 - **Base model**: `Qwen/Qwen2.5-3B` - **Instruction model**: `Qwen/Qwen2.5-3B-Instruct` ## Files - **model.safetensors**: Serialized residual tensors (safetensors format). - (optional) **model.safetensors.index.json** + shard files `model-00001-of-000N.safetensors`, ... for multi-part weights. - **config.json**: Residuals metadata and provenance. - **tokenizer files**: Saved tokenizer for compatibility. ## About this format These are additive residuals (task vectors). Applying them to the base model's parameters reconstructs the instruction-tuned model. ## Tools Generated with the `residuals` Python package. Install via: `pip install residuals`. - PyPI: https://pypi.org/project/residuals/ - Source: https://github.com/omarish/residuals