File size: 3,217 Bytes
aa4d499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
base_model: meta-llama/Meta-Llama-3-8B
library_name: peft
license: llama3
metrics:
- accuracy
- precision
- recall
tags:
- generated_from_trainer
model-index:
- name: Llama3_8B_final_Task2_2.0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama3_8B_final_Task2_2.0

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5334
- Accuracy: 0.9129
- Precision: 0.9050
- Recall: 0.9231
- F1 score: 0.9140

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1 score |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
| 0.6105        | 0.2725 | 200  | 0.3962          | 0.8486   | 0.8793    | 0.8091 | 0.8427   |
| 0.4553        | 0.5450 | 400  | 0.3388          | 0.8757   | 0.8729    | 0.8803 | 0.8766   |
| 0.4318        | 0.8174 | 600  | 0.3273          | 0.89     | 0.9006    | 0.8775 | 0.8889   |
| 0.3155        | 1.0899 | 800  | 0.3807          | 0.89     | 0.9281    | 0.8462 | 0.8852   |
| 0.3279        | 1.3624 | 1000 | 0.3757          | 0.8943   | 0.9601    | 0.8234 | 0.8865   |
| 0.2451        | 1.6349 | 1200 | 0.3784          | 0.89     | 0.8683    | 0.9202 | 0.8935   |
| 0.2956        | 1.9074 | 1400 | 0.3187          | 0.9143   | 0.9318    | 0.8946 | 0.9128   |
| 0.2107        | 2.1798 | 1600 | 0.3999          | 0.89     | 0.8513    | 0.9459 | 0.8961   |
| 0.1744        | 2.4523 | 1800 | 0.6330          | 0.8857   | 0.9788    | 0.7892 | 0.8738   |
| 0.191         | 2.7248 | 2000 | 0.4101          | 0.91     | 0.9444    | 0.8718 | 0.9067   |
| 0.1378        | 2.9973 | 2200 | 0.4604          | 0.8957   | 0.8582    | 0.9487 | 0.9012   |
| 0.0703        | 3.2698 | 2400 | 0.4276          | 0.9      | 0.8958    | 0.9060 | 0.9008   |
| 0.0582        | 3.5422 | 2600 | 0.5431          | 0.9086   | 0.9527    | 0.8604 | 0.9042   |
| 0.0887        | 3.8147 | 2800 | 0.4993          | 0.9157   | 0.9534    | 0.8746 | 0.9123   |
| 0.0976        | 4.0872 | 3000 | 0.4540          | 0.9157   | 0.9269    | 0.9031 | 0.9149   |
| 0.0179        | 4.3597 | 3200 | 0.5068          | 0.92     | 0.9086    | 0.9345 | 0.9213   |
| 0.0277        | 4.6322 | 3400 | 0.5119          | 0.9157   | 0.9269    | 0.9031 | 0.9149   |
| 0.0231        | 4.9046 | 3600 | 0.5334          | 0.9129   | 0.9050    | 0.9231 | 0.9140   |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1