File size: 3,809 Bytes
ebf46e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
library_name: transformers
license: apache-2.0
base_model: google/flan-t5-large
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: flanT5_large_Task2_semantic_pred
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flanT5_large_Task2_semantic_pred

This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9725
- Accuracy: 0.7979
- Precision: 0.8195
- Recall: 0.7566
- F1 score: 0.7868

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Accuracy | Precision | Recall | F1 score |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:---------:|:------:|:--------:|
| 1.3836        | 0.4074 | 2500  | 1.7839          | 0.5072   | 0.0       | 0.0    | 0.0      |
| 1.3837        | 0.8147 | 5000  | 0.7528          | 0.5072   | 0.0       | 0.0    | 0.0      |
| 1.2525        | 1.2221 | 7500  | 0.7166          | 0.4928   | 0.4928    | 1.0    | 0.6603   |
| 1.2899        | 1.6295 | 10000 | 1.5233          | 0.6310   | 0.5765    | 0.9471 | 0.7167   |
| 1.4214        | 2.0368 | 12500 | 1.2841          | 0.6571   | 0.6021    | 0.8968 | 0.7205   |
| 1.4003        | 2.4442 | 15000 | 1.1805          | 0.6115   | 0.5615    | 0.9656 | 0.7101   |
| 1.3396        | 2.8516 | 17500 | 0.9273          | 0.6206   | 0.5683    | 0.9577 | 0.7133   |
| 1.3938        | 3.2589 | 20000 | 1.5375          | 0.6858   | 0.7322    | 0.5714 | 0.6419   |
| 1.4272        | 3.6663 | 22500 | 1.2804          | 0.7158   | 0.7548    | 0.6270 | 0.6850   |
| 1.2643        | 4.0737 | 25000 | 1.2878          | 0.7262   | 0.7692    | 0.6349 | 0.6957   |
| 1.3015        | 4.4810 | 27500 | 1.1752          | 0.7158   | 0.7532    | 0.6296 | 0.6859   |
| 1.3525        | 4.8884 | 30000 | 1.1726          | 0.7249   | 0.6946    | 0.7884 | 0.7385   |
| 1.2839        | 5.2957 | 32500 | 1.0721          | 0.7223   | 0.7586    | 0.6402 | 0.6944   |
| 1.2047        | 5.7031 | 35000 | 1.3045          | 0.7223   | 0.7089    | 0.7407 | 0.7245   |
| 1.226         | 6.1105 | 37500 | 1.1262          | 0.7366   | 0.7486    | 0.7011 | 0.7240   |
| 1.1001        | 6.5178 | 40000 | 1.2328          | 0.7445   | 0.7407    | 0.7407 | 0.7407   |
| 1.1083        | 6.9252 | 42500 | 1.1119          | 0.7353   | 0.7030    | 0.8016 | 0.7491   |
| 1.0281        | 7.3326 | 45000 | 1.1205          | 0.7471   | 0.7434    | 0.7434 | 0.7434   |
| 1.0396        | 7.7399 | 47500 | 1.1243          | 0.7640   | 0.7958    | 0.7011 | 0.7454   |
| 0.9913        | 8.1473 | 50000 | 0.9882          | 0.7823   | 0.8187    | 0.7169 | 0.7645   |
| 0.9364        | 8.5547 | 52500 | 1.1489          | 0.7705   | 0.7488    | 0.8042 | 0.7755   |
| 1.0081        | 8.9620 | 55000 | 0.9507          | 0.7810   | 0.7807    | 0.7725 | 0.7766   |
| 0.9026        | 9.3694 | 57500 | 1.0181          | 0.7888   | 0.7888    | 0.7804 | 0.7846   |
| 0.8961        | 9.7768 | 60000 | 0.9725          | 0.7979   | 0.8195    | 0.7566 | 0.7868   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1