# coding=utf-8 # Copyright 2024 The Dimple team and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dimple model configuration""" import os from typing import Union from transformers.configuration_utils import PretrainedConfig from transformers.modeling_rope_utils import rope_config_validation from transformers.utils import logging logger = logging.get_logger("Dimple."+__name__) class DimpleVisionConfig(PretrainedConfig): model_type = "dimple" def __init__( self, depth=32, hidden_size=1280, hidden_act="silu", intermediate_size=3420, num_heads=16, in_channels=3, patch_size=14, spatial_merge_size=2, temporal_patch_size=2, tokens_per_second=2, window_size=112, out_hidden_size=3584, fullatt_block_indexes=[7, 15, 23, 31], **kwargs, ): super().__init__(**kwargs) self.depth = depth self.hidden_size = hidden_size self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.num_heads = num_heads self.in_channels = in_channels self.patch_size = patch_size self.spatial_merge_size = spatial_merge_size self.temporal_patch_size = temporal_patch_size self.tokens_per_second = tokens_per_second self.window_size = window_size self.fullatt_block_indexes = fullatt_block_indexes self.out_hidden_size = out_hidden_size @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) if config_dict.get("model_type") == "dimple": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class DimpleConfig(PretrainedConfig): model_type = "dimple" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=151936, hidden_size=4096, intermediate_size=22016, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_act="silu", max_position_embeddings=32768, initializer_range=0.02, image_token_id = 151655, video_token_id = 151656, vision_end_token_id = 151653, vision_start_token_id = 151652, vision_token_id = 151654, rms_norm_eps=1e-6, use_cache=False, # cache not used in diffusion tie_word_embeddings=False, rope_theta=10000.0, use_sliding_window=False, sliding_window=4096, max_window_layers=28, attention_dropout=0.0, mask_token_id=151666, pad_token_id=151643, vision_config=None, rope_scaling=None, mrope_section=[16,24,24], full_attn_mask = True, **kwargs, ): if isinstance(vision_config, dict): self.vision_config = DimpleVisionConfig(**vision_config) elif vision_config is None: self.vision_config = DimpleVisionConfig() self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.use_sliding_window = use_sliding_window self.sliding_window = sliding_window if use_sliding_window else None self.max_window_layers = max_window_layers # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_dropout = attention_dropout # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, move it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self, ignore_keys={"mrope_section"}) self.mrope_section = mrope_section super().__init__( tie_word_embeddings=tie_word_embeddings, **kwargs, ) self.mask_token_id = mask_token_id self.pad_token_id = pad_token_id self.image_token_id = image_token_id self.video_token_id = video_token_id self.vision_end_token_id = vision_end_token_id self.vision_start_token_id = vision_start_token_id self.vision_token_id = vision_token_id self.full_attn_mask = full_attn_mask