Text Generation
Transformers
Safetensors
qwen3
conversational
text-generation-inference
davidanugraha commited on
Commit
50b56c3
·
verified ·
1 Parent(s): 705581b

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
chat_template.jinja ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if message.content is string %}
27
+ {%- set content = message.content %}
28
+ {%- else %}
29
+ {%- set content = '' %}
30
+ {%- endif %}
31
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
32
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
33
+ {%- elif message.role == "assistant" %}
34
+ {%- set reasoning_content = '' %}
35
+ {%- if message.reasoning_content is string %}
36
+ {%- set reasoning_content = message.reasoning_content %}
37
+ {%- else %}
38
+ {%- if '</think>' in content %}
39
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
40
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
41
+ {%- endif %}
42
+ {%- endif %}
43
+ {%- if loop.index0 > ns.last_query_index %}
44
+ {%- if loop.last or (not loop.last and reasoning_content) %}
45
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
46
+ {%- else %}
47
+ {{- '<|im_start|>' + message.role + '\n' + content }}
48
+ {%- endif %}
49
+ {%- else %}
50
+ {{- '<|im_start|>' + message.role + '\n' + content }}
51
+ {%- endif %}
52
+ {%- if message.tool_calls %}
53
+ {%- for tool_call in message.tool_calls %}
54
+ {%- if (loop.first and content) or (not loop.first) %}
55
+ {{- '\n' }}
56
+ {%- endif %}
57
+ {%- if tool_call.function %}
58
+ {%- set tool_call = tool_call.function %}
59
+ {%- endif %}
60
+ {{- '<tool_call>\n{"name": "' }}
61
+ {{- tool_call.name }}
62
+ {{- '", "arguments": ' }}
63
+ {%- if tool_call.arguments is string %}
64
+ {{- tool_call.arguments }}
65
+ {%- else %}
66
+ {{- tool_call.arguments | tojson }}
67
+ {%- endif %}
68
+ {{- '}\n</tool_call>' }}
69
+ {%- endfor %}
70
+ {%- endif %}
71
+ {{- '<|im_end|>\n' }}
72
+ {%- elif message.role == "tool" %}
73
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
74
+ {{- '<|im_start|>user' }}
75
+ {%- endif %}
76
+ {{- '\n<tool_response>\n' }}
77
+ {{- content }}
78
+ {{- '\n</tool_response>' }}
79
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
80
+ {{- '<|im_end|>\n' }}
81
+ {%- endif %}
82
+ {%- endif %}
83
+ {%- endfor %}
84
+ {%- if add_generation_prompt %}
85
+ {{- '<|im_start|>assistant\n' }}
86
+ {%- if enable_thinking is defined and enable_thinking is false %}
87
+ {{- '<think>\n\n</think>\n\n' }}
88
+ {%- endif %}
89
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 5120,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 17408,
14
+ "max_position_embeddings": 40960,
15
+ "max_window_layers": 40,
16
+ "model_type": "qwen3",
17
+ "num_attention_heads": 40,
18
+ "num_hidden_layers": 40,
19
+ "num_key_value_heads": 8,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 1000000,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.52.4",
27
+ "use_cache": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151936
30
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.6,
10
+ "top_k": 20,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.52.4"
13
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step423
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34d5e5f2d4bcda48455cbda64f3d7214b908a099abf26c009fe12736c3a3bf60
3
+ size 4984780784
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c3c578b448a961bdbe06d97b5a96540e958a50264a214fb9f80f15917b722c0
3
+ size 4980892048
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68e82ac3f41259912b0979248ab5f536f29c75f4f9f2efd341ec6b199e5ecafd
3
+ size 4928485104
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb8bd69ce548a74e7b6ccd78bcf879ee4a2816dd9920c1f780e91b609ef45d12
3
+ size 4980892112
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a2b44061365f52912ff11ecf42b6814cd5eca26bf785deb15e1b1e5c5b785dd
3
+ size 4928485104
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3759900e57a0d8a16d713ca14fade334c482ce4ee23d85601d8f5cc898b50cb2
3
+ size 4733130504
model.safetensors.index.json ADDED
@@ -0,0 +1,450 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29536614400
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
27
+ "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
29
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
30
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.10.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
38
+ "model.layers.10.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.11.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.11.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
50
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
53
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
54
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
55
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
57
+ "model.layers.12.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.12.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
62
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
64
+ "model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
65
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
66
+ "model.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
67
+ "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
68
+ "model.layers.13.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
69
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
70
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
71
+ "model.layers.13.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.14.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.14.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
79
+ "model.layers.14.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.14.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
90
+ "model.layers.15.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
91
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
92
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.15.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
99
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
100
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
101
+ "model.layers.16.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
102
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
103
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
104
+ "model.layers.16.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
110
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.17.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
113
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
115
+ "model.layers.17.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
117
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
118
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
119
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
120
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
121
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
122
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
123
+ "model.layers.18.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
124
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
125
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.18.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
127
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
134
+ "model.layers.19.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
137
+ "model.layers.19.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
139
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
141
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
142
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
143
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
144
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
145
+ "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
146
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
147
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
148
+ "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
149
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
150
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
151
+ "model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
152
+ "model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
153
+ "model.layers.20.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
154
+ "model.layers.20.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
155
+ "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
156
+ "model.layers.20.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
157
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
158
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
159
+ "model.layers.20.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
160
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
161
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
162
+ "model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
163
+ "model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
164
+ "model.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
165
+ "model.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
166
+ "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
167
+ "model.layers.21.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
168
+ "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
169
+ "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
170
+ "model.layers.21.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
171
+ "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
172
+ "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
173
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
174
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
175
+ "model.layers.22.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
176
+ "model.layers.22.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
177
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
178
+ "model.layers.22.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
179
+ "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
180
+ "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
181
+ "model.layers.22.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
182
+ "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
183
+ "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
184
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
185
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
186
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
187
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
188
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
189
+ "model.layers.23.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
190
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
191
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
192
+ "model.layers.23.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
193
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
194
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
195
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
196
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
197
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
198
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
199
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
200
+ "model.layers.24.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
201
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
202
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
203
+ "model.layers.24.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
204
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
205
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
206
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
207
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
208
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
209
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
210
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
211
+ "model.layers.25.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
212
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.25.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
216
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
217
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
218
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
219
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
220
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
221
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
222
+ "model.layers.26.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
223
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
224
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
225
+ "model.layers.26.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
226
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
228
+ "model.layers.27.input_layernorm.weight": "model-00005-of-00006.safetensors",
229
+ "model.layers.27.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
230
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.27.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
233
+ "model.layers.27.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
234
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
235
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
236
+ "model.layers.27.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
237
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
238
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
239
+ "model.layers.28.input_layernorm.weight": "model-00005-of-00006.safetensors",
240
+ "model.layers.28.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
241
+ "model.layers.28.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
242
+ "model.layers.28.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
243
+ "model.layers.28.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
244
+ "model.layers.28.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
245
+ "model.layers.28.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
246
+ "model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
247
+ "model.layers.28.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
248
+ "model.layers.28.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
249
+ "model.layers.28.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
250
+ "model.layers.29.input_layernorm.weight": "model-00005-of-00006.safetensors",
251
+ "model.layers.29.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
252
+ "model.layers.29.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
253
+ "model.layers.29.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
254
+ "model.layers.29.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
255
+ "model.layers.29.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
256
+ "model.layers.29.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
257
+ "model.layers.29.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
258
+ "model.layers.29.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
259
+ "model.layers.29.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
260
+ "model.layers.29.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
261
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
262
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
263
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
264
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
265
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
266
+ "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
267
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
268
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
269
+ "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
270
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
272
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
273
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
274
+ "model.layers.30.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
275
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
276
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
277
+ "model.layers.30.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
278
+ "model.layers.30.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
279
+ "model.layers.30.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
280
+ "model.layers.30.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
281
+ "model.layers.30.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
282
+ "model.layers.30.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
283
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
284
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
285
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
286
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
287
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
288
+ "model.layers.31.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
289
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
290
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
291
+ "model.layers.31.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
292
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
293
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
294
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
295
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
296
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
297
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
298
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
299
+ "model.layers.32.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
300
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
301
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
302
+ "model.layers.32.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
303
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
304
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
305
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
306
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
307
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
308
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
309
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
310
+ "model.layers.33.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
311
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
312
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
313
+ "model.layers.33.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
314
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
315
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
316
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
317
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
318
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
319
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
320
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
321
+ "model.layers.34.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
322
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
323
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
324
+ "model.layers.34.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
325
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
326
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
327
+ "model.layers.35.input_layernorm.weight": "model-00006-of-00006.safetensors",
328
+ "model.layers.35.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
329
+ "model.layers.35.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
330
+ "model.layers.35.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
331
+ "model.layers.35.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
332
+ "model.layers.35.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
333
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
334
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
335
+ "model.layers.35.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
336
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
337
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
338
+ "model.layers.36.input_layernorm.weight": "model-00006-of-00006.safetensors",
339
+ "model.layers.36.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
340
+ "model.layers.36.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
341
+ "model.layers.36.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
342
+ "model.layers.36.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
343
+ "model.layers.36.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
344
+ "model.layers.36.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
345
+ "model.layers.36.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
346
+ "model.layers.36.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
347
+ "model.layers.36.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
348
+ "model.layers.36.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
349
+ "model.layers.37.input_layernorm.weight": "model-00006-of-00006.safetensors",
350
+ "model.layers.37.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
351
+ "model.layers.37.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
352
+ "model.layers.37.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
353
+ "model.layers.37.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
354
+ "model.layers.37.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
355
+ "model.layers.37.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
356
+ "model.layers.37.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
357
+ "model.layers.37.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
358
+ "model.layers.37.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
359
+ "model.layers.37.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
360
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
361
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
362
+ "model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
363
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
364
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
365
+ "model.layers.38.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
366
+ "model.layers.38.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
367
+ "model.layers.38.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
368
+ "model.layers.38.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
369
+ "model.layers.38.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
370
+ "model.layers.38.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
371
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
372
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
373
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
374
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
375
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
376
+ "model.layers.39.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
377
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
378
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
379
+ "model.layers.39.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
380
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
381
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
382
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
383
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
384
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
385
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
386
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
387
+ "model.layers.4.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
388
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
389
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
390
+ "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
391
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
392
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
393
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
394
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
395
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
396
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
397
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
398
+ "model.layers.5.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
399
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
400
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
401
+ "model.layers.5.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
402
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
403
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
404
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
405
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
406
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
407
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
408
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
409
+ "model.layers.6.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
410
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
411
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
412
+ "model.layers.6.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
413
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
414
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
415
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
416
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
417
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
418
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
419
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
420
+ "model.layers.7.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
421
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
422
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
423
+ "model.layers.7.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
424
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
425
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
426
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
427
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
428
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
429
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
430
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
431
+ "model.layers.8.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
432
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
433
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
434
+ "model.layers.8.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
435
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
436
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
437
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
438
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
439
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
440
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
441
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
442
+ "model.layers.9.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
443
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
444
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
445
+ "model.layers.9.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
446
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
447
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
448
+ "model.norm.weight": "model-00006-of-00006.safetensors"
449
+ }
450
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:308f94f9a5c24e1bad5c393d56ae7af7782600f4e791d9c6ac35b22fff2105b6
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b056f3c23cb32dc77a2ec9e7651e0b64e4440e21f0fdf969b86bfc56a1cbdf06
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3f8a05714bc528f4885a2816181652f2303b3e8150f89b56aaee6bec56aa520
3
+ size 15024
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f755bd3c330281961e5c03af9d10ce8c1e1678619d384f6f1fd5fd7dce2ff50
3
+ size 15024
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b98b34c8624255c142ef1c289afeb46d84dfd96034098c99fe5529111f5e33f7
3
+ size 15024
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47949b0df2efc08ab690d6d3675a5d87b18a30a2fb6a1372cc245bf32aa806b4
3
+ size 15024
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82a0af955ccdfcc8ba1821a24e8c3dee9ef313357c358ff1e60fc2c2be21e5a4
3
+ size 15024
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf3256237cabc84ea9fffa73e0da6d748f96838812078792b22874b902e4bf73
3
+ size 15024
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c1a3ba8f11ffd29fde0abe0b3d718b68e1880da2949edbed2a0d7c4fc632903
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 131072,
235
+ "pad_token": "<|endoftext|>",
236
+ "padding_side": "right",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
trainer_state.json ADDED
@@ -0,0 +1,2995 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.0,
6
+ "eval_steps": 500,
7
+ "global_step": 423,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0070921985815602835,
14
+ "grad_norm": 5.777980327606201,
15
+ "learning_rate": 0.0,
16
+ "loss": 1.6312,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.014184397163120567,
21
+ "grad_norm": 5.754700660705566,
22
+ "learning_rate": 2.3255813953488374e-07,
23
+ "loss": 1.65,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.02127659574468085,
28
+ "grad_norm": 5.919105529785156,
29
+ "learning_rate": 4.651162790697675e-07,
30
+ "loss": 1.6812,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.028368794326241134,
35
+ "grad_norm": 5.887588977813721,
36
+ "learning_rate": 6.976744186046513e-07,
37
+ "loss": 1.7015,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.03546099290780142,
42
+ "grad_norm": 5.932762622833252,
43
+ "learning_rate": 9.30232558139535e-07,
44
+ "loss": 1.6648,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.0425531914893617,
49
+ "grad_norm": 5.459700584411621,
50
+ "learning_rate": 1.1627906976744188e-06,
51
+ "loss": 1.6356,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.04964539007092199,
56
+ "grad_norm": 5.5110764503479,
57
+ "learning_rate": 1.3953488372093025e-06,
58
+ "loss": 1.642,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.05673758865248227,
63
+ "grad_norm": 4.986560344696045,
64
+ "learning_rate": 1.6279069767441862e-06,
65
+ "loss": 1.6056,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.06382978723404255,
70
+ "grad_norm": 4.967083930969238,
71
+ "learning_rate": 1.86046511627907e-06,
72
+ "loss": 1.6179,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.07092198581560284,
77
+ "grad_norm": 3.372753143310547,
78
+ "learning_rate": 2.0930232558139536e-06,
79
+ "loss": 1.5471,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.07801418439716312,
84
+ "grad_norm": 3.3070132732391357,
85
+ "learning_rate": 2.3255813953488376e-06,
86
+ "loss": 1.5119,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.0851063829787234,
91
+ "grad_norm": 2.9118688106536865,
92
+ "learning_rate": 2.558139534883721e-06,
93
+ "loss": 1.4956,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.09219858156028368,
98
+ "grad_norm": 2.111111879348755,
99
+ "learning_rate": 2.790697674418605e-06,
100
+ "loss": 1.4849,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.09929078014184398,
105
+ "grad_norm": 1.896662712097168,
106
+ "learning_rate": 3.0232558139534885e-06,
107
+ "loss": 1.4593,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.10638297872340426,
112
+ "grad_norm": 1.8128881454467773,
113
+ "learning_rate": 3.2558139534883724e-06,
114
+ "loss": 1.4569,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.11347517730496454,
119
+ "grad_norm": 1.6560497283935547,
120
+ "learning_rate": 3.4883720930232564e-06,
121
+ "loss": 1.4258,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.12056737588652482,
126
+ "grad_norm": 1.5061492919921875,
127
+ "learning_rate": 3.72093023255814e-06,
128
+ "loss": 1.3646,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.1276595744680851,
133
+ "grad_norm": 1.4421842098236084,
134
+ "learning_rate": 3.953488372093024e-06,
135
+ "loss": 1.3759,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.1347517730496454,
140
+ "grad_norm": 1.6656174659729004,
141
+ "learning_rate": 4.186046511627907e-06,
142
+ "loss": 1.346,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.14184397163120568,
147
+ "grad_norm": 1.5938531160354614,
148
+ "learning_rate": 4.418604651162791e-06,
149
+ "loss": 1.3267,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.14893617021276595,
154
+ "grad_norm": 1.4535658359527588,
155
+ "learning_rate": 4.651162790697675e-06,
156
+ "loss": 1.3159,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.15602836879432624,
161
+ "grad_norm": 1.2296608686447144,
162
+ "learning_rate": 4.883720930232559e-06,
163
+ "loss": 1.3144,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.16312056737588654,
168
+ "grad_norm": 1.0187760591506958,
169
+ "learning_rate": 5.116279069767442e-06,
170
+ "loss": 1.2738,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.1702127659574468,
175
+ "grad_norm": 0.7561401724815369,
176
+ "learning_rate": 5.348837209302326e-06,
177
+ "loss": 1.2752,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.1773049645390071,
182
+ "grad_norm": 0.7404045462608337,
183
+ "learning_rate": 5.58139534883721e-06,
184
+ "loss": 1.2338,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.18439716312056736,
189
+ "grad_norm": 0.8450738787651062,
190
+ "learning_rate": 5.8139534883720935e-06,
191
+ "loss": 1.1847,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.19148936170212766,
196
+ "grad_norm": 0.8557640910148621,
197
+ "learning_rate": 6.046511627906977e-06,
198
+ "loss": 1.2414,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.19858156028368795,
203
+ "grad_norm": 0.7255589365959167,
204
+ "learning_rate": 6.279069767441861e-06,
205
+ "loss": 1.1874,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.20567375886524822,
210
+ "grad_norm": 0.6485627889633179,
211
+ "learning_rate": 6.511627906976745e-06,
212
+ "loss": 1.2164,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.2127659574468085,
217
+ "grad_norm": 0.5685610175132751,
218
+ "learning_rate": 6.744186046511628e-06,
219
+ "loss": 1.1576,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.2198581560283688,
224
+ "grad_norm": 0.5513559579849243,
225
+ "learning_rate": 6.976744186046513e-06,
226
+ "loss": 1.1599,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.22695035460992907,
231
+ "grad_norm": 0.5789648294448853,
232
+ "learning_rate": 7.209302325581395e-06,
233
+ "loss": 1.1577,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.23404255319148937,
238
+ "grad_norm": 0.5217244625091553,
239
+ "learning_rate": 7.44186046511628e-06,
240
+ "loss": 1.1636,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.24113475177304963,
245
+ "grad_norm": 0.48746103048324585,
246
+ "learning_rate": 7.674418604651164e-06,
247
+ "loss": 1.1309,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.24822695035460993,
252
+ "grad_norm": 0.4570249319076538,
253
+ "learning_rate": 7.906976744186048e-06,
254
+ "loss": 1.129,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.2553191489361702,
259
+ "grad_norm": 0.48672929406166077,
260
+ "learning_rate": 8.139534883720931e-06,
261
+ "loss": 1.1536,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.2624113475177305,
266
+ "grad_norm": 0.4759041666984558,
267
+ "learning_rate": 8.372093023255815e-06,
268
+ "loss": 1.1194,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.2695035460992908,
273
+ "grad_norm": 0.44275835156440735,
274
+ "learning_rate": 8.604651162790698e-06,
275
+ "loss": 1.1007,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.2765957446808511,
280
+ "grad_norm": 0.4226142466068268,
281
+ "learning_rate": 8.837209302325582e-06,
282
+ "loss": 1.1255,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.28368794326241137,
287
+ "grad_norm": 0.35801962018013,
288
+ "learning_rate": 9.069767441860465e-06,
289
+ "loss": 1.1091,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.2907801418439716,
294
+ "grad_norm": 0.33172303438186646,
295
+ "learning_rate": 9.30232558139535e-06,
296
+ "loss": 1.0927,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.2978723404255319,
301
+ "grad_norm": 0.3826102912425995,
302
+ "learning_rate": 9.534883720930234e-06,
303
+ "loss": 1.115,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.3049645390070922,
308
+ "grad_norm": 0.37179189920425415,
309
+ "learning_rate": 9.767441860465117e-06,
310
+ "loss": 1.0644,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.3120567375886525,
315
+ "grad_norm": 0.3904111981391907,
316
+ "learning_rate": 1e-05,
317
+ "loss": 1.0932,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.3191489361702128,
322
+ "grad_norm": 0.3148801326751709,
323
+ "learning_rate": 9.999829128320873e-06,
324
+ "loss": 1.1085,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.3262411347517731,
329
+ "grad_norm": 0.3012698292732239,
330
+ "learning_rate": 9.999316524962347e-06,
331
+ "loss": 1.0673,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.3333333333333333,
336
+ "grad_norm": 0.2862606346607208,
337
+ "learning_rate": 9.998462224960176e-06,
338
+ "loss": 1.0918,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.3404255319148936,
343
+ "grad_norm": 0.2962920069694519,
344
+ "learning_rate": 9.99726628670463e-06,
345
+ "loss": 1.0914,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.3475177304964539,
350
+ "grad_norm": 0.290487140417099,
351
+ "learning_rate": 9.995728791936505e-06,
352
+ "loss": 1.086,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.3546099290780142,
357
+ "grad_norm": 0.2692384123802185,
358
+ "learning_rate": 9.993849845741525e-06,
359
+ "loss": 1.0647,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.3617021276595745,
364
+ "grad_norm": 0.2540633976459503,
365
+ "learning_rate": 9.991629576543164e-06,
366
+ "loss": 1.0528,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.36879432624113473,
371
+ "grad_norm": 0.23808936774730682,
372
+ "learning_rate": 9.989068136093873e-06,
373
+ "loss": 1.0747,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.375886524822695,
378
+ "grad_norm": 0.24669921398162842,
379
+ "learning_rate": 9.986165699464706e-06,
380
+ "loss": 1.051,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.3829787234042553,
385
+ "grad_norm": 0.23184196650981903,
386
+ "learning_rate": 9.98292246503335e-06,
387
+ "loss": 1.0266,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.3900709219858156,
392
+ "grad_norm": 0.23330503702163696,
393
+ "learning_rate": 9.97933865447057e-06,
394
+ "loss": 1.0789,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.3971631205673759,
399
+ "grad_norm": 0.2424897402524948,
400
+ "learning_rate": 9.975414512725058e-06,
401
+ "loss": 1.0656,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.40425531914893614,
406
+ "grad_norm": 0.21921077370643616,
407
+ "learning_rate": 9.971150308006689e-06,
408
+ "loss": 1.0726,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.41134751773049644,
413
+ "grad_norm": 0.20950859785079956,
414
+ "learning_rate": 9.966546331768192e-06,
415
+ "loss": 1.0632,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.41843971631205673,
420
+ "grad_norm": 0.21916094422340393,
421
+ "learning_rate": 9.961602898685225e-06,
422
+ "loss": 1.0685,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.425531914893617,
427
+ "grad_norm": 0.20929180085659027,
428
+ "learning_rate": 9.956320346634877e-06,
429
+ "loss": 1.0368,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.4326241134751773,
434
+ "grad_norm": 0.19803281128406525,
435
+ "learning_rate": 9.95069903667256e-06,
436
+ "loss": 1.0454,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.4397163120567376,
441
+ "grad_norm": 0.20181335508823395,
442
+ "learning_rate": 9.944739353007344e-06,
443
+ "loss": 1.0365,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.44680851063829785,
448
+ "grad_norm": 0.2039608657360077,
449
+ "learning_rate": 9.938441702975689e-06,
450
+ "loss": 1.0164,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.45390070921985815,
455
+ "grad_norm": 0.20605549216270447,
456
+ "learning_rate": 9.931806517013612e-06,
457
+ "loss": 1.0635,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.46099290780141844,
462
+ "grad_norm": 0.1921020895242691,
463
+ "learning_rate": 9.92483424862726e-06,
464
+ "loss": 1.032,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.46808510638297873,
469
+ "grad_norm": 0.19488710165023804,
470
+ "learning_rate": 9.917525374361913e-06,
471
+ "loss": 1.0477,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.475177304964539,
476
+ "grad_norm": 0.20245994627475739,
477
+ "learning_rate": 9.90988039376942e-06,
478
+ "loss": 1.0539,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.48226950354609927,
483
+ "grad_norm": 0.20090186595916748,
484
+ "learning_rate": 9.901899829374048e-06,
485
+ "loss": 1.0446,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.48936170212765956,
490
+ "grad_norm": 0.20061436295509338,
491
+ "learning_rate": 9.893584226636773e-06,
492
+ "loss": 1.0474,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.49645390070921985,
497
+ "grad_norm": 0.1957883983850479,
498
+ "learning_rate": 9.884934153917998e-06,
499
+ "loss": 1.0212,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.5035460992907801,
504
+ "grad_norm": 0.1866292655467987,
505
+ "learning_rate": 9.8759502024387e-06,
506
+ "loss": 1.0285,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.5106382978723404,
511
+ "grad_norm": 0.20395490527153015,
512
+ "learning_rate": 9.86663298624003e-06,
513
+ "loss": 1.05,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.5177304964539007,
518
+ "grad_norm": 0.19490036368370056,
519
+ "learning_rate": 9.856983142141338e-06,
520
+ "loss": 1.0437,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.524822695035461,
525
+ "grad_norm": 0.18446774780750275,
526
+ "learning_rate": 9.847001329696653e-06,
527
+ "loss": 1.0449,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.5319148936170213,
532
+ "grad_norm": 0.20253527164459229,
533
+ "learning_rate": 9.836688231149593e-06,
534
+ "loss": 1.0089,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.5390070921985816,
539
+ "grad_norm": 0.21082448959350586,
540
+ "learning_rate": 9.826044551386743e-06,
541
+ "loss": 1.0228,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.5460992907801419,
546
+ "grad_norm": 0.19042915105819702,
547
+ "learning_rate": 9.81507101788948e-06,
548
+ "loss": 1.0281,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.5531914893617021,
553
+ "grad_norm": 0.20652195811271667,
554
+ "learning_rate": 9.803768380684242e-06,
555
+ "loss": 1.0584,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.5602836879432624,
560
+ "grad_norm": 0.19188715517520905,
561
+ "learning_rate": 9.792137412291265e-06,
562
+ "loss": 1.0329,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.5673758865248227,
567
+ "grad_norm": 0.19346344470977783,
568
+ "learning_rate": 9.780178907671788e-06,
569
+ "loss": 1.019,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.574468085106383,
574
+ "grad_norm": 0.19410409033298492,
575
+ "learning_rate": 9.767893684173722e-06,
576
+ "loss": 1.0201,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.5815602836879432,
581
+ "grad_norm": 0.19631166756153107,
582
+ "learning_rate": 9.755282581475769e-06,
583
+ "loss": 1.0162,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.5886524822695035,
588
+ "grad_norm": 0.18170547485351562,
589
+ "learning_rate": 9.742346461530048e-06,
590
+ "loss": 1.0272,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.5957446808510638,
595
+ "grad_norm": 0.19224867224693298,
596
+ "learning_rate": 9.729086208503174e-06,
597
+ "loss": 1.002,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.6028368794326241,
602
+ "grad_norm": 0.1961982250213623,
603
+ "learning_rate": 9.715502728715827e-06,
604
+ "loss": 1.0024,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.6099290780141844,
609
+ "grad_norm": 0.19919396936893463,
610
+ "learning_rate": 9.701596950580807e-06,
611
+ "loss": 1.0277,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.6170212765957447,
616
+ "grad_norm": 0.19481903314590454,
617
+ "learning_rate": 9.687369824539577e-06,
618
+ "loss": 1.0318,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.624113475177305,
623
+ "grad_norm": 0.20056012272834778,
624
+ "learning_rate": 9.672822322997305e-06,
625
+ "loss": 1.0457,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.6312056737588653,
630
+ "grad_norm": 0.186695396900177,
631
+ "learning_rate": 9.657955440256396e-06,
632
+ "loss": 1.0384,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.6382978723404256,
637
+ "grad_norm": 0.1910395473241806,
638
+ "learning_rate": 9.642770192448537e-06,
639
+ "loss": 1.02,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.6453900709219859,
644
+ "grad_norm": 0.19218654930591583,
645
+ "learning_rate": 9.627267617465243e-06,
646
+ "loss": 1.0262,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.6524822695035462,
651
+ "grad_norm": 0.20698124170303345,
652
+ "learning_rate": 9.611448774886925e-06,
653
+ "loss": 1.0214,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.6595744680851063,
658
+ "grad_norm": 0.1869155317544937,
659
+ "learning_rate": 9.595314745910455e-06,
660
+ "loss": 1.0176,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.6666666666666666,
665
+ "grad_norm": 0.19854748249053955,
666
+ "learning_rate": 9.578866633275289e-06,
667
+ "loss": 1.0213,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.6737588652482269,
672
+ "grad_norm": 0.20198820531368256,
673
+ "learning_rate": 9.562105561188069e-06,
674
+ "loss": 1.0088,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.6808510638297872,
679
+ "grad_norm": 0.19861312210559845,
680
+ "learning_rate": 9.545032675245814e-06,
681
+ "loss": 1.0026,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.6879432624113475,
686
+ "grad_norm": 0.2025546431541443,
687
+ "learning_rate": 9.527649142357596e-06,
688
+ "loss": 0.9929,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.6950354609929078,
693
+ "grad_norm": 0.20362333953380585,
694
+ "learning_rate": 9.509956150664796e-06,
695
+ "loss": 1.022,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.7021276595744681,
700
+ "grad_norm": 0.19811417162418365,
701
+ "learning_rate": 9.491954909459895e-06,
702
+ "loss": 0.9932,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.7092198581560284,
707
+ "grad_norm": 0.19115161895751953,
708
+ "learning_rate": 9.473646649103819e-06,
709
+ "loss": 1.0015,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.7163120567375887,
714
+ "grad_norm": 0.1923169642686844,
715
+ "learning_rate": 9.45503262094184e-06,
716
+ "loss": 1.0037,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.723404255319149,
721
+ "grad_norm": 0.1964125782251358,
722
+ "learning_rate": 9.43611409721806e-06,
723
+ "loss": 1.001,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.7304964539007093,
728
+ "grad_norm": 0.19892272353172302,
729
+ "learning_rate": 9.416892370988445e-06,
730
+ "loss": 1.0361,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.7375886524822695,
735
+ "grad_norm": 0.19403427839279175,
736
+ "learning_rate": 9.397368756032445e-06,
737
+ "loss": 0.9928,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.7446808510638298,
742
+ "grad_norm": 0.19587570428848267,
743
+ "learning_rate": 9.377544586763216e-06,
744
+ "loss": 1.0158,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.75177304964539,
749
+ "grad_norm": 0.18641604483127594,
750
+ "learning_rate": 9.357421218136387e-06,
751
+ "loss": 0.9796,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.7588652482269503,
756
+ "grad_norm": 0.1914488524198532,
757
+ "learning_rate": 9.337000025557477e-06,
758
+ "loss": 1.0075,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.7659574468085106,
763
+ "grad_norm": 0.18581831455230713,
764
+ "learning_rate": 9.31628240478787e-06,
765
+ "loss": 1.0121,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.7730496453900709,
770
+ "grad_norm": 0.19224292039871216,
771
+ "learning_rate": 9.295269771849426e-06,
772
+ "loss": 1.0479,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.7801418439716312,
777
+ "grad_norm": 0.18176913261413574,
778
+ "learning_rate": 9.273963562927695e-06,
779
+ "loss": 1.0063,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.7872340425531915,
784
+ "grad_norm": 0.20030972361564636,
785
+ "learning_rate": 9.252365234273754e-06,
786
+ "loss": 1.0349,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.7943262411347518,
791
+ "grad_norm": 0.18550996482372284,
792
+ "learning_rate": 9.230476262104678e-06,
793
+ "loss": 1.0236,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.8014184397163121,
798
+ "grad_norm": 0.20744724571704865,
799
+ "learning_rate": 9.208298142502637e-06,
800
+ "loss": 0.9884,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.8085106382978723,
805
+ "grad_norm": 0.1943831443786621,
806
+ "learning_rate": 9.185832391312644e-06,
807
+ "loss": 1.0071,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.8156028368794326,
812
+ "grad_norm": 0.20337262749671936,
813
+ "learning_rate": 9.163080544038953e-06,
814
+ "loss": 1.0196,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.8226950354609929,
819
+ "grad_norm": 0.20451538264751434,
820
+ "learning_rate": 9.140044155740102e-06,
821
+ "loss": 0.9787,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.8297872340425532,
826
+ "grad_norm": 0.2050030678510666,
827
+ "learning_rate": 9.11672480092263e-06,
828
+ "loss": 0.99,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.8368794326241135,
833
+ "grad_norm": 0.18984027206897736,
834
+ "learning_rate": 9.093124073433464e-06,
835
+ "loss": 1.0012,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.8439716312056738,
840
+ "grad_norm": 0.19882577657699585,
841
+ "learning_rate": 9.069243586350976e-06,
842
+ "loss": 1.0213,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.851063829787234,
847
+ "grad_norm": 0.18450938165187836,
848
+ "learning_rate": 9.045084971874738e-06,
849
+ "loss": 1.025,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.8581560283687943,
854
+ "grad_norm": 0.20340915024280548,
855
+ "learning_rate": 9.02064988121396e-06,
856
+ "loss": 0.9901,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.8652482269503546,
861
+ "grad_norm": 0.20006223022937775,
862
+ "learning_rate": 8.995939984474624e-06,
863
+ "loss": 0.9847,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.8723404255319149,
868
+ "grad_norm": 0.19546881318092346,
869
+ "learning_rate": 8.970956970545356e-06,
870
+ "loss": 1.0009,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.8794326241134752,
875
+ "grad_norm": 0.19550330936908722,
876
+ "learning_rate": 8.94570254698197e-06,
877
+ "loss": 1.0014,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.8865248226950354,
882
+ "grad_norm": 0.20895220339298248,
883
+ "learning_rate": 8.920178439890765e-06,
884
+ "loss": 0.9941,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.8936170212765957,
889
+ "grad_norm": 0.19648240506649017,
890
+ "learning_rate": 8.894386393810563e-06,
891
+ "loss": 0.9768,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.900709219858156,
896
+ "grad_norm": 0.20133382081985474,
897
+ "learning_rate": 8.868328171593448e-06,
898
+ "loss": 0.9833,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.9078014184397163,
903
+ "grad_norm": 0.21077631413936615,
904
+ "learning_rate": 8.842005554284296e-06,
905
+ "loss": 1.0164,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.9148936170212766,
910
+ "grad_norm": 0.22325192391872406,
911
+ "learning_rate": 8.815420340999034e-06,
912
+ "loss": 1.0162,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.9219858156028369,
917
+ "grad_norm": 0.203014075756073,
918
+ "learning_rate": 8.788574348801676e-06,
919
+ "loss": 1.015,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.9290780141843972,
924
+ "grad_norm": 0.21376149356365204,
925
+ "learning_rate": 8.761469412580126e-06,
926
+ "loss": 1.0152,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.9361702127659575,
931
+ "grad_norm": 0.21650567650794983,
932
+ "learning_rate": 8.734107384920771e-06,
933
+ "loss": 0.9946,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.9432624113475178,
938
+ "grad_norm": 0.20015230774879456,
939
+ "learning_rate": 8.706490135981856e-06,
940
+ "loss": 1.0039,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.950354609929078,
945
+ "grad_norm": 0.1983427256345749,
946
+ "learning_rate": 8.67861955336566e-06,
947
+ "loss": 0.9855,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.9574468085106383,
952
+ "grad_norm": 0.200357124209404,
953
+ "learning_rate": 8.650497541989483e-06,
954
+ "loss": 1.0297,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.9645390070921985,
959
+ "grad_norm": 0.1992904543876648,
960
+ "learning_rate": 8.622126023955446e-06,
961
+ "loss": 0.9844,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.9716312056737588,
966
+ "grad_norm": 0.2062419056892395,
967
+ "learning_rate": 8.59350693841912e-06,
968
+ "loss": 0.9856,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.9787234042553191,
973
+ "grad_norm": 0.19228526949882507,
974
+ "learning_rate": 8.564642241456986e-06,
975
+ "loss": 1.0012,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.9858156028368794,
980
+ "grad_norm": 0.1982816457748413,
981
+ "learning_rate": 8.535533905932739e-06,
982
+ "loss": 1.0048,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.9929078014184397,
987
+ "grad_norm": 0.21971984207630157,
988
+ "learning_rate": 8.506183921362443e-06,
989
+ "loss": 1.0008,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 1.0,
994
+ "grad_norm": 0.21237662434577942,
995
+ "learning_rate": 8.476594293778561e-06,
996
+ "loss": 0.9844,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 1.0070921985815602,
1001
+ "grad_norm": 0.2145996391773224,
1002
+ "learning_rate": 8.446767045592829e-06,
1003
+ "loss": 0.9751,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 1.0141843971631206,
1008
+ "grad_norm": 0.18791967630386353,
1009
+ "learning_rate": 8.416704215458042e-06,
1010
+ "loss": 0.9872,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 1.0212765957446808,
1015
+ "grad_norm": 0.2027330994606018,
1016
+ "learning_rate": 8.386407858128707e-06,
1017
+ "loss": 0.9903,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 1.0283687943262412,
1022
+ "grad_norm": 0.20994175970554352,
1023
+ "learning_rate": 8.355880044320599e-06,
1024
+ "loss": 0.9883,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 1.0354609929078014,
1029
+ "grad_norm": 0.20633184909820557,
1030
+ "learning_rate": 8.325122860569241e-06,
1031
+ "loss": 1.0155,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 1.0425531914893618,
1036
+ "grad_norm": 0.2211437076330185,
1037
+ "learning_rate": 8.29413840908729e-06,
1038
+ "loss": 0.9611,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 1.049645390070922,
1043
+ "grad_norm": 0.2136813998222351,
1044
+ "learning_rate": 8.262928807620843e-06,
1045
+ "loss": 1.0017,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 1.0567375886524824,
1050
+ "grad_norm": 0.20764672756195068,
1051
+ "learning_rate": 8.231496189304704e-06,
1052
+ "loss": 0.9868,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 1.0638297872340425,
1057
+ "grad_norm": 0.21529912948608398,
1058
+ "learning_rate": 8.199842702516584e-06,
1059
+ "loss": 0.9791,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 1.070921985815603,
1064
+ "grad_norm": 0.21646371483802795,
1065
+ "learning_rate": 8.167970510730254e-06,
1066
+ "loss": 0.9682,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 1.0780141843971631,
1071
+ "grad_norm": 0.23525112867355347,
1072
+ "learning_rate": 8.135881792367686e-06,
1073
+ "loss": 0.9728,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 1.0851063829787233,
1078
+ "grad_norm": 0.20280921459197998,
1079
+ "learning_rate": 8.103578740650157e-06,
1080
+ "loss": 0.9444,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 1.0921985815602837,
1085
+ "grad_norm": 0.22146719694137573,
1086
+ "learning_rate": 8.071063563448341e-06,
1087
+ "loss": 0.9704,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 1.099290780141844,
1092
+ "grad_norm": 0.21181389689445496,
1093
+ "learning_rate": 8.038338483131408e-06,
1094
+ "loss": 1.0009,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 1.1063829787234043,
1099
+ "grad_norm": 0.19996969401836395,
1100
+ "learning_rate": 8.005405736415127e-06,
1101
+ "loss": 0.9672,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 1.1134751773049645,
1106
+ "grad_norm": 0.21428182721138,
1107
+ "learning_rate": 7.972267574208991e-06,
1108
+ "loss": 0.9817,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 1.1205673758865249,
1113
+ "grad_norm": 0.20944583415985107,
1114
+ "learning_rate": 7.938926261462366e-06,
1115
+ "loss": 0.9553,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 1.127659574468085,
1120
+ "grad_norm": 0.21751722693443298,
1121
+ "learning_rate": 7.905384077009693e-06,
1122
+ "loss": 0.9705,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 1.1347517730496455,
1127
+ "grad_norm": 0.19217561185359955,
1128
+ "learning_rate": 7.871643313414718e-06,
1129
+ "loss": 0.9743,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 1.1418439716312057,
1134
+ "grad_norm": 0.21539221704006195,
1135
+ "learning_rate": 7.837706276813819e-06,
1136
+ "loss": 0.9742,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 1.148936170212766,
1141
+ "grad_norm": 0.20422764122486115,
1142
+ "learning_rate": 7.803575286758365e-06,
1143
+ "loss": 0.9657,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 1.1560283687943262,
1148
+ "grad_norm": 0.22533419728279114,
1149
+ "learning_rate": 7.769252676056186e-06,
1150
+ "loss": 0.9888,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 1.1631205673758864,
1155
+ "grad_norm": 0.2112210988998413,
1156
+ "learning_rate": 7.734740790612137e-06,
1157
+ "loss": 0.9702,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 1.1702127659574468,
1162
+ "grad_norm": 0.2327321320772171,
1163
+ "learning_rate": 7.700041989267738e-06,
1164
+ "loss": 0.9968,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 1.177304964539007,
1169
+ "grad_norm": 0.20969471335411072,
1170
+ "learning_rate": 7.66515864363997e-06,
1171
+ "loss": 0.9834,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 1.1843971631205674,
1176
+ "grad_norm": 0.2076883465051651,
1177
+ "learning_rate": 7.63009313795917e-06,
1178
+ "loss": 1.0022,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 1.1914893617021276,
1183
+ "grad_norm": 0.2031002789735794,
1184
+ "learning_rate": 7.594847868906076e-06,
1185
+ "loss": 0.9576,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 1.198581560283688,
1190
+ "grad_norm": 0.20676583051681519,
1191
+ "learning_rate": 7.559425245448006e-06,
1192
+ "loss": 0.9522,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 1.2056737588652482,
1197
+ "grad_norm": 0.19986094534397125,
1198
+ "learning_rate": 7.52382768867422e-06,
1199
+ "loss": 1.0005,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 1.2127659574468086,
1204
+ "grad_norm": 0.20511922240257263,
1205
+ "learning_rate": 7.488057631630438e-06,
1206
+ "loss": 0.9907,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 1.2198581560283688,
1211
+ "grad_norm": 0.2091362178325653,
1212
+ "learning_rate": 7.452117519152542e-06,
1213
+ "loss": 0.9696,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 1.226950354609929,
1218
+ "grad_norm": 0.20658285915851593,
1219
+ "learning_rate": 7.416009807699481e-06,
1220
+ "loss": 0.9724,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 1.2340425531914894,
1225
+ "grad_norm": 0.20578406751155853,
1226
+ "learning_rate": 7.379736965185369e-06,
1227
+ "loss": 0.9651,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 1.2411347517730495,
1232
+ "grad_norm": 0.19912122189998627,
1233
+ "learning_rate": 7.343301470810809e-06,
1234
+ "loss": 0.9669,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 1.24822695035461,
1239
+ "grad_norm": 0.20967933535575867,
1240
+ "learning_rate": 7.30670581489344e-06,
1241
+ "loss": 0.958,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 1.2553191489361701,
1246
+ "grad_norm": 0.20045220851898193,
1247
+ "learning_rate": 7.269952498697734e-06,
1248
+ "loss": 0.9891,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 1.2624113475177305,
1253
+ "grad_norm": 0.20343008637428284,
1254
+ "learning_rate": 7.233044034264034e-06,
1255
+ "loss": 0.9555,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 1.2695035460992907,
1260
+ "grad_norm": 0.2061295509338379,
1261
+ "learning_rate": 7.195982944236853e-06,
1262
+ "loss": 0.9778,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 1.2765957446808511,
1267
+ "grad_norm": 0.2172738015651703,
1268
+ "learning_rate": 7.158771761692464e-06,
1269
+ "loss": 0.9904,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 1.2836879432624113,
1274
+ "grad_norm": 0.2063237875699997,
1275
+ "learning_rate": 7.121413029965769e-06,
1276
+ "loss": 0.962,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 1.2907801418439715,
1281
+ "grad_norm": 0.21524560451507568,
1282
+ "learning_rate": 7.083909302476453e-06,
1283
+ "loss": 0.9384,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 1.297872340425532,
1288
+ "grad_norm": 0.2063521295785904,
1289
+ "learning_rate": 7.04626314255447e-06,
1290
+ "loss": 0.9938,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 1.3049645390070923,
1295
+ "grad_norm": 0.21301975846290588,
1296
+ "learning_rate": 7.008477123264849e-06,
1297
+ "loss": 0.9648,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 1.3120567375886525,
1302
+ "grad_norm": 0.22273679077625275,
1303
+ "learning_rate": 6.970553827231809e-06,
1304
+ "loss": 0.9901,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 1.3191489361702127,
1309
+ "grad_norm": 0.21703994274139404,
1310
+ "learning_rate": 6.932495846462262e-06,
1311
+ "loss": 0.9551,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 1.326241134751773,
1316
+ "grad_norm": 0.20577090978622437,
1317
+ "learning_rate": 6.8943057821686386e-06,
1318
+ "loss": 0.9766,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 1.3333333333333333,
1323
+ "grad_norm": 0.2066967487335205,
1324
+ "learning_rate": 6.855986244591104e-06,
1325
+ "loss": 0.957,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 1.3404255319148937,
1330
+ "grad_norm": 0.21506328880786896,
1331
+ "learning_rate": 6.817539852819149e-06,
1332
+ "loss": 0.9726,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 1.3475177304964538,
1337
+ "grad_norm": 0.20125408470630646,
1338
+ "learning_rate": 6.778969234612583e-06,
1339
+ "loss": 0.9432,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 1.3546099290780143,
1344
+ "grad_norm": 0.22270430624485016,
1345
+ "learning_rate": 6.7402770262219234e-06,
1346
+ "loss": 0.9774,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 1.3617021276595744,
1351
+ "grad_norm": 0.21136341989040375,
1352
+ "learning_rate": 6.701465872208216e-06,
1353
+ "loss": 0.9853,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 1.3687943262411348,
1358
+ "grad_norm": 0.1968621164560318,
1359
+ "learning_rate": 6.662538425262285e-06,
1360
+ "loss": 0.9679,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 1.375886524822695,
1365
+ "grad_norm": 0.20722901821136475,
1366
+ "learning_rate": 6.6234973460234184e-06,
1367
+ "loss": 0.9525,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 1.3829787234042552,
1372
+ "grad_norm": 0.2028326392173767,
1373
+ "learning_rate": 6.584345302897522e-06,
1374
+ "loss": 0.9623,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 1.3900709219858156,
1379
+ "grad_norm": 0.20606288313865662,
1380
+ "learning_rate": 6.545084971874738e-06,
1381
+ "loss": 0.9732,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 1.397163120567376,
1386
+ "grad_norm": 0.206637442111969,
1387
+ "learning_rate": 6.505719036346538e-06,
1388
+ "loss": 0.9663,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 1.4042553191489362,
1393
+ "grad_norm": 0.20356805622577667,
1394
+ "learning_rate": 6.466250186922325e-06,
1395
+ "loss": 0.9606,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 1.4113475177304964,
1400
+ "grad_norm": 0.202161967754364,
1401
+ "learning_rate": 6.426681121245527e-06,
1402
+ "loss": 0.9836,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 1.4184397163120568,
1407
+ "grad_norm": 0.20478235185146332,
1408
+ "learning_rate": 6.387014543809224e-06,
1409
+ "loss": 0.9643,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 1.425531914893617,
1414
+ "grad_norm": 0.20939572155475616,
1415
+ "learning_rate": 6.34725316577129e-06,
1416
+ "loss": 0.9507,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 1.4326241134751774,
1421
+ "grad_norm": 0.2136376053094864,
1422
+ "learning_rate": 6.3073997047691e-06,
1423
+ "loss": 0.9682,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 1.4397163120567376,
1428
+ "grad_norm": 0.18985818326473236,
1429
+ "learning_rate": 6.26745688473377e-06,
1430
+ "loss": 0.9759,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 1.4468085106382977,
1435
+ "grad_norm": 0.21012678742408752,
1436
+ "learning_rate": 6.227427435703997e-06,
1437
+ "loss": 0.9834,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 1.4539007092198581,
1442
+ "grad_norm": 0.21440032124519348,
1443
+ "learning_rate": 6.187314093639444e-06,
1444
+ "loss": 0.9569,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 1.4609929078014185,
1449
+ "grad_norm": 0.21152129769325256,
1450
+ "learning_rate": 6.147119600233758e-06,
1451
+ "loss": 0.9755,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 1.4680851063829787,
1456
+ "grad_norm": 0.2023329734802246,
1457
+ "learning_rate": 6.106846702727173e-06,
1458
+ "loss": 0.979,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 1.475177304964539,
1463
+ "grad_norm": 0.1883651167154312,
1464
+ "learning_rate": 6.066498153718735e-06,
1465
+ "loss": 0.9468,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 1.4822695035460993,
1470
+ "grad_norm": 0.2066640406847,
1471
+ "learning_rate": 6.026076710978172e-06,
1472
+ "loss": 0.9508,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 1.4893617021276595,
1477
+ "grad_norm": 0.19015434384346008,
1478
+ "learning_rate": 5.985585137257401e-06,
1479
+ "loss": 0.954,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 1.49645390070922,
1484
+ "grad_norm": 0.20339594781398773,
1485
+ "learning_rate": 5.945026200101702e-06,
1486
+ "loss": 0.9522,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 1.50354609929078,
1491
+ "grad_norm": 0.20150522887706757,
1492
+ "learning_rate": 5.904402671660551e-06,
1493
+ "loss": 0.9866,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 1.5106382978723403,
1498
+ "grad_norm": 0.18772345781326294,
1499
+ "learning_rate": 5.863717328498153e-06,
1500
+ "loss": 0.9712,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 1.5177304964539007,
1505
+ "grad_norm": 0.18971088528633118,
1506
+ "learning_rate": 5.82297295140367e-06,
1507
+ "loss": 0.9548,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 1.524822695035461,
1512
+ "grad_norm": 0.1919199824333191,
1513
+ "learning_rate": 5.782172325201155e-06,
1514
+ "loss": 0.9512,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 1.5319148936170213,
1519
+ "grad_norm": 0.20227546989917755,
1520
+ "learning_rate": 5.74131823855921e-06,
1521
+ "loss": 0.9716,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 1.5390070921985815,
1526
+ "grad_norm": 0.20456035435199738,
1527
+ "learning_rate": 5.70041348380039e-06,
1528
+ "loss": 0.9761,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 1.5460992907801419,
1533
+ "grad_norm": 0.198979914188385,
1534
+ "learning_rate": 5.659460856710346e-06,
1535
+ "loss": 0.9662,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 1.5531914893617023,
1540
+ "grad_norm": 0.20134767889976501,
1541
+ "learning_rate": 5.61846315634674e-06,
1542
+ "loss": 0.9721,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 1.5602836879432624,
1547
+ "grad_norm": 0.21277011930942535,
1548
+ "learning_rate": 5.577423184847932e-06,
1549
+ "loss": 0.9434,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 1.5673758865248226,
1554
+ "grad_norm": 0.19326528906822205,
1555
+ "learning_rate": 5.53634374724146e-06,
1556
+ "loss": 0.9436,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 1.574468085106383,
1561
+ "grad_norm": 0.18982355296611786,
1562
+ "learning_rate": 5.495227651252315e-06,
1563
+ "loss": 0.9463,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 1.5815602836879432,
1568
+ "grad_norm": 0.19490861892700195,
1569
+ "learning_rate": 5.4540777071110415e-06,
1570
+ "loss": 0.967,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 1.5886524822695036,
1575
+ "grad_norm": 0.2064967155456543,
1576
+ "learning_rate": 5.412896727361663e-06,
1577
+ "loss": 0.9404,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 1.5957446808510638,
1582
+ "grad_norm": 0.18899056315422058,
1583
+ "learning_rate": 5.371687526669439e-06,
1584
+ "loss": 0.9714,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 1.602836879432624,
1589
+ "grad_norm": 0.2016034871339798,
1590
+ "learning_rate": 5.3304529216284974e-06,
1591
+ "loss": 0.9782,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 1.6099290780141844,
1596
+ "grad_norm": 0.19563241302967072,
1597
+ "learning_rate": 5.289195730569321e-06,
1598
+ "loss": 0.9504,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 1.6170212765957448,
1603
+ "grad_norm": 0.1931428462266922,
1604
+ "learning_rate": 5.247918773366112e-06,
1605
+ "loss": 0.9631,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 1.624113475177305,
1610
+ "grad_norm": 0.18997250497341156,
1611
+ "learning_rate": 5.206624871244066e-06,
1612
+ "loss": 0.9603,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 1.6312056737588652,
1617
+ "grad_norm": 0.20812998712062836,
1618
+ "learning_rate": 5.165316846586541e-06,
1619
+ "loss": 0.9441,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 1.6382978723404256,
1624
+ "grad_norm": 0.19451972842216492,
1625
+ "learning_rate": 5.123997522742151e-06,
1626
+ "loss": 0.9549,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 1.645390070921986,
1631
+ "grad_norm": 0.2104620635509491,
1632
+ "learning_rate": 5.082669723831793e-06,
1633
+ "loss": 0.9516,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 1.6524822695035462,
1638
+ "grad_norm": 0.20235127210617065,
1639
+ "learning_rate": 5.041336274555625e-06,
1640
+ "loss": 0.9657,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 1.6595744680851063,
1645
+ "grad_norm": 0.21978402137756348,
1646
+ "learning_rate": 5e-06,
1647
+ "loss": 0.9778,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 1.6666666666666665,
1652
+ "grad_norm": 0.2063991278409958,
1653
+ "learning_rate": 4.958663725444376e-06,
1654
+ "loss": 0.9612,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 1.673758865248227,
1659
+ "grad_norm": 0.22222791612148285,
1660
+ "learning_rate": 4.917330276168208e-06,
1661
+ "loss": 0.9505,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 1.6808510638297873,
1666
+ "grad_norm": 0.22436769306659698,
1667
+ "learning_rate": 4.87600247725785e-06,
1668
+ "loss": 0.9807,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 1.6879432624113475,
1673
+ "grad_norm": 0.20231737196445465,
1674
+ "learning_rate": 4.8346831534134595e-06,
1675
+ "loss": 0.9621,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 1.6950354609929077,
1680
+ "grad_norm": 0.1958695352077484,
1681
+ "learning_rate": 4.793375128755934e-06,
1682
+ "loss": 0.9774,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 1.702127659574468,
1687
+ "grad_norm": 0.19618870317935944,
1688
+ "learning_rate": 4.752081226633888e-06,
1689
+ "loss": 0.9311,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 1.7092198581560285,
1694
+ "grad_norm": 0.19945023953914642,
1695
+ "learning_rate": 4.710804269430681e-06,
1696
+ "loss": 0.931,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 1.7163120567375887,
1701
+ "grad_norm": 0.196953684091568,
1702
+ "learning_rate": 4.669547078371503e-06,
1703
+ "loss": 0.9741,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 1.7234042553191489,
1708
+ "grad_norm": 0.2063244730234146,
1709
+ "learning_rate": 4.628312473330563e-06,
1710
+ "loss": 0.9726,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 1.7304964539007093,
1715
+ "grad_norm": 0.18242137134075165,
1716
+ "learning_rate": 4.587103272638339e-06,
1717
+ "loss": 0.9472,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 1.7375886524822695,
1722
+ "grad_norm": 0.194502592086792,
1723
+ "learning_rate": 4.545922292888959e-06,
1724
+ "loss": 0.9785,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 1.7446808510638299,
1729
+ "grad_norm": 0.20667670667171478,
1730
+ "learning_rate": 4.504772348747687e-06,
1731
+ "loss": 0.9584,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 1.75177304964539,
1736
+ "grad_norm": 0.22737909853458405,
1737
+ "learning_rate": 4.463656252758543e-06,
1738
+ "loss": 1.0043,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 1.7588652482269502,
1743
+ "grad_norm": 0.20659123361110687,
1744
+ "learning_rate": 4.42257681515207e-06,
1745
+ "loss": 0.9615,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 1.7659574468085106,
1750
+ "grad_norm": 0.18234670162200928,
1751
+ "learning_rate": 4.381536843653262e-06,
1752
+ "loss": 0.9551,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 1.773049645390071,
1757
+ "grad_norm": 0.2069019377231598,
1758
+ "learning_rate": 4.340539143289655e-06,
1759
+ "loss": 0.9866,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 1.7801418439716312,
1764
+ "grad_norm": 0.2130233496427536,
1765
+ "learning_rate": 4.299586516199611e-06,
1766
+ "loss": 0.9544,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 1.7872340425531914,
1771
+ "grad_norm": 0.2061052918434143,
1772
+ "learning_rate": 4.25868176144079e-06,
1773
+ "loss": 0.9744,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 1.7943262411347518,
1778
+ "grad_norm": 0.19117064774036407,
1779
+ "learning_rate": 4.217827674798845e-06,
1780
+ "loss": 0.9386,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 1.8014184397163122,
1785
+ "grad_norm": 0.19266286492347717,
1786
+ "learning_rate": 4.17702704859633e-06,
1787
+ "loss": 0.9687,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 1.8085106382978724,
1792
+ "grad_norm": 0.18624667823314667,
1793
+ "learning_rate": 4.13628267150185e-06,
1794
+ "loss": 0.9683,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 1.8156028368794326,
1799
+ "grad_norm": 0.22691506147384644,
1800
+ "learning_rate": 4.0955973283394525e-06,
1801
+ "loss": 0.9635,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 1.8226950354609928,
1806
+ "grad_norm": 0.19554078578948975,
1807
+ "learning_rate": 4.054973799898299e-06,
1808
+ "loss": 0.9584,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 1.8297872340425532,
1813
+ "grad_norm": 0.19966286420822144,
1814
+ "learning_rate": 4.0144148627426e-06,
1815
+ "loss": 0.98,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 1.8368794326241136,
1820
+ "grad_norm": 0.18636463582515717,
1821
+ "learning_rate": 3.973923289021829e-06,
1822
+ "loss": 0.9292,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 1.8439716312056738,
1827
+ "grad_norm": 0.19922591745853424,
1828
+ "learning_rate": 3.9335018462812664e-06,
1829
+ "loss": 0.9495,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 1.851063829787234,
1834
+ "grad_norm": 0.1965838074684143,
1835
+ "learning_rate": 3.893153297272829e-06,
1836
+ "loss": 0.9478,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 1.8581560283687943,
1841
+ "grad_norm": 0.19277480244636536,
1842
+ "learning_rate": 3.852880399766243e-06,
1843
+ "loss": 0.9529,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 1.8652482269503547,
1848
+ "grad_norm": 0.19886280596256256,
1849
+ "learning_rate": 3.8126859063605576e-06,
1850
+ "loss": 0.9703,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 1.872340425531915,
1855
+ "grad_norm": 0.19059477746486664,
1856
+ "learning_rate": 3.7725725642960047e-06,
1857
+ "loss": 0.9379,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 1.8794326241134751,
1862
+ "grad_norm": 0.18369245529174805,
1863
+ "learning_rate": 3.73254311526623e-06,
1864
+ "loss": 0.9618,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 1.8865248226950353,
1869
+ "grad_norm": 0.19077903032302856,
1870
+ "learning_rate": 3.6926002952309015e-06,
1871
+ "loss": 0.9497,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 1.8936170212765957,
1876
+ "grad_norm": 0.19216984510421753,
1877
+ "learning_rate": 3.6527468342287104e-06,
1878
+ "loss": 0.9678,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 1.900709219858156,
1883
+ "grad_norm": 0.18526242673397064,
1884
+ "learning_rate": 3.6129854561907786e-06,
1885
+ "loss": 0.9648,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 1.9078014184397163,
1890
+ "grad_norm": 0.19354566931724548,
1891
+ "learning_rate": 3.573318878754475e-06,
1892
+ "loss": 0.962,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 1.9148936170212765,
1897
+ "grad_norm": 0.19122359156608582,
1898
+ "learning_rate": 3.533749813077677e-06,
1899
+ "loss": 0.9795,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 1.9219858156028369,
1904
+ "grad_norm": 0.18988463282585144,
1905
+ "learning_rate": 3.4942809636534637e-06,
1906
+ "loss": 0.9648,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 1.9290780141843973,
1911
+ "grad_norm": 0.1826263815164566,
1912
+ "learning_rate": 3.4549150281252635e-06,
1913
+ "loss": 0.9593,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 1.9361702127659575,
1918
+ "grad_norm": 0.20058442652225494,
1919
+ "learning_rate": 3.4156546971024783e-06,
1920
+ "loss": 0.9538,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 1.9432624113475176,
1925
+ "grad_norm": 0.18569344282150269,
1926
+ "learning_rate": 3.3765026539765832e-06,
1927
+ "loss": 0.9328,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 1.950354609929078,
1932
+ "grad_norm": 0.1828421801328659,
1933
+ "learning_rate": 3.3374615747377165e-06,
1934
+ "loss": 0.957,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 1.9574468085106385,
1939
+ "grad_norm": 0.18512752652168274,
1940
+ "learning_rate": 3.298534127791785e-06,
1941
+ "loss": 0.9555,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 1.9645390070921986,
1946
+ "grad_norm": 0.1988511085510254,
1947
+ "learning_rate": 3.259722973778078e-06,
1948
+ "loss": 0.9542,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 1.9716312056737588,
1953
+ "grad_norm": 0.20536436140537262,
1954
+ "learning_rate": 3.2210307653874175e-06,
1955
+ "loss": 0.9732,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 1.978723404255319,
1960
+ "grad_norm": 0.18166613578796387,
1961
+ "learning_rate": 3.1824601471808504e-06,
1962
+ "loss": 0.9675,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 1.9858156028368794,
1967
+ "grad_norm": 0.17907901108264923,
1968
+ "learning_rate": 3.1440137554088957e-06,
1969
+ "loss": 0.9576,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 1.9929078014184398,
1974
+ "grad_norm": 0.1949305683374405,
1975
+ "learning_rate": 3.105694217831361e-06,
1976
+ "loss": 0.9552,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 2.0,
1981
+ "grad_norm": 0.2091778814792633,
1982
+ "learning_rate": 3.06750415353774e-06,
1983
+ "loss": 0.9396,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 2.00709219858156,
1988
+ "grad_norm": 0.22290584444999695,
1989
+ "learning_rate": 3.0294461727681936e-06,
1990
+ "loss": 0.9482,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 2.0141843971631204,
1995
+ "grad_norm": 0.2103525847196579,
1996
+ "learning_rate": 2.991522876735154e-06,
1997
+ "loss": 0.9448,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 2.021276595744681,
2002
+ "grad_norm": 0.18519747257232666,
2003
+ "learning_rate": 2.9537368574455304e-06,
2004
+ "loss": 0.9343,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 2.028368794326241,
2009
+ "grad_norm": 0.2083410620689392,
2010
+ "learning_rate": 2.9160906975235493e-06,
2011
+ "loss": 0.937,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 2.0354609929078014,
2016
+ "grad_norm": 0.21592524647712708,
2017
+ "learning_rate": 2.8785869700342322e-06,
2018
+ "loss": 0.9449,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 2.0425531914893615,
2023
+ "grad_norm": 0.18326295912265778,
2024
+ "learning_rate": 2.8412282383075362e-06,
2025
+ "loss": 0.9343,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 2.049645390070922,
2030
+ "grad_norm": 0.1971648782491684,
2031
+ "learning_rate": 2.804017055763149e-06,
2032
+ "loss": 0.9498,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 2.0567375886524824,
2037
+ "grad_norm": 0.1955241709947586,
2038
+ "learning_rate": 2.766955965735968e-06,
2039
+ "loss": 0.9332,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 2.0638297872340425,
2044
+ "grad_norm": 0.18832024931907654,
2045
+ "learning_rate": 2.7300475013022666e-06,
2046
+ "loss": 0.9281,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 2.0709219858156027,
2051
+ "grad_norm": 0.18282903730869293,
2052
+ "learning_rate": 2.693294185106562e-06,
2053
+ "loss": 0.9624,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 2.078014184397163,
2058
+ "grad_norm": 0.1973196119070053,
2059
+ "learning_rate": 2.6566985291891932e-06,
2060
+ "loss": 0.9235,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 2.0851063829787235,
2065
+ "grad_norm": 0.1856066882610321,
2066
+ "learning_rate": 2.6202630348146323e-06,
2067
+ "loss": 0.9416,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 2.0921985815602837,
2072
+ "grad_norm": 0.1804654747247696,
2073
+ "learning_rate": 2.5839901923005207e-06,
2074
+ "loss": 0.9279,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 2.099290780141844,
2079
+ "grad_norm": 0.1944091022014618,
2080
+ "learning_rate": 2.5478824808474613e-06,
2081
+ "loss": 0.9446,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 2.106382978723404,
2086
+ "grad_norm": 0.19213660061359406,
2087
+ "learning_rate": 2.511942368369566e-06,
2088
+ "loss": 0.9423,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 2.1134751773049647,
2093
+ "grad_norm": 0.2019748091697693,
2094
+ "learning_rate": 2.476172311325783e-06,
2095
+ "loss": 0.9366,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 2.120567375886525,
2100
+ "grad_norm": 0.18752597272396088,
2101
+ "learning_rate": 2.4405747545519966e-06,
2102
+ "loss": 0.943,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 2.127659574468085,
2107
+ "grad_norm": 0.21256884932518005,
2108
+ "learning_rate": 2.4051521310939258e-06,
2109
+ "loss": 0.946,
2110
+ "step": 300
2111
+ },
2112
+ {
2113
+ "epoch": 2.1347517730496453,
2114
+ "grad_norm": 0.19255441427230835,
2115
+ "learning_rate": 2.3699068620408305e-06,
2116
+ "loss": 0.9518,
2117
+ "step": 301
2118
+ },
2119
+ {
2120
+ "epoch": 2.141843971631206,
2121
+ "grad_norm": 0.19296486675739288,
2122
+ "learning_rate": 2.3348413563600324e-06,
2123
+ "loss": 0.9204,
2124
+ "step": 302
2125
+ },
2126
+ {
2127
+ "epoch": 2.148936170212766,
2128
+ "grad_norm": 0.185301274061203,
2129
+ "learning_rate": 2.2999580107322654e-06,
2130
+ "loss": 0.9496,
2131
+ "step": 303
2132
+ },
2133
+ {
2134
+ "epoch": 2.1560283687943262,
2135
+ "grad_norm": 0.18680962920188904,
2136
+ "learning_rate": 2.265259209387867e-06,
2137
+ "loss": 0.9317,
2138
+ "step": 304
2139
+ },
2140
+ {
2141
+ "epoch": 2.1631205673758864,
2142
+ "grad_norm": 0.18720752000808716,
2143
+ "learning_rate": 2.2307473239438153e-06,
2144
+ "loss": 0.9442,
2145
+ "step": 305
2146
+ },
2147
+ {
2148
+ "epoch": 2.1702127659574466,
2149
+ "grad_norm": 0.17528828978538513,
2150
+ "learning_rate": 2.1964247132416373e-06,
2151
+ "loss": 0.911,
2152
+ "step": 306
2153
+ },
2154
+ {
2155
+ "epoch": 2.1773049645390072,
2156
+ "grad_norm": 0.20737330615520477,
2157
+ "learning_rate": 2.1622937231861823e-06,
2158
+ "loss": 0.9548,
2159
+ "step": 307
2160
+ },
2161
+ {
2162
+ "epoch": 2.1843971631205674,
2163
+ "grad_norm": 0.19633513689041138,
2164
+ "learning_rate": 2.1283566865852824e-06,
2165
+ "loss": 0.9262,
2166
+ "step": 308
2167
+ },
2168
+ {
2169
+ "epoch": 2.1914893617021276,
2170
+ "grad_norm": 0.1804002970457077,
2171
+ "learning_rate": 2.094615922990309e-06,
2172
+ "loss": 0.9323,
2173
+ "step": 309
2174
+ },
2175
+ {
2176
+ "epoch": 2.198581560283688,
2177
+ "grad_norm": 0.19144874811172485,
2178
+ "learning_rate": 2.061073738537635e-06,
2179
+ "loss": 0.9455,
2180
+ "step": 310
2181
+ },
2182
+ {
2183
+ "epoch": 2.2056737588652484,
2184
+ "grad_norm": 0.1808236688375473,
2185
+ "learning_rate": 2.027732425791011e-06,
2186
+ "loss": 0.9518,
2187
+ "step": 311
2188
+ },
2189
+ {
2190
+ "epoch": 2.2127659574468086,
2191
+ "grad_norm": 0.1889459639787674,
2192
+ "learning_rate": 1.9945942635848745e-06,
2193
+ "loss": 0.9645,
2194
+ "step": 312
2195
+ },
2196
+ {
2197
+ "epoch": 2.219858156028369,
2198
+ "grad_norm": 0.18562434613704681,
2199
+ "learning_rate": 1.961661516868594e-06,
2200
+ "loss": 0.9139,
2201
+ "step": 313
2202
+ },
2203
+ {
2204
+ "epoch": 2.226950354609929,
2205
+ "grad_norm": 0.19447514414787292,
2206
+ "learning_rate": 1.928936436551661e-06,
2207
+ "loss": 0.9423,
2208
+ "step": 314
2209
+ },
2210
+ {
2211
+ "epoch": 2.2340425531914896,
2212
+ "grad_norm": 0.18953830003738403,
2213
+ "learning_rate": 1.8964212593498444e-06,
2214
+ "loss": 0.9662,
2215
+ "step": 315
2216
+ },
2217
+ {
2218
+ "epoch": 2.2411347517730498,
2219
+ "grad_norm": 0.18533062934875488,
2220
+ "learning_rate": 1.864118207632315e-06,
2221
+ "loss": 0.9559,
2222
+ "step": 316
2223
+ },
2224
+ {
2225
+ "epoch": 2.24822695035461,
2226
+ "grad_norm": 0.18788859248161316,
2227
+ "learning_rate": 1.8320294892697477e-06,
2228
+ "loss": 0.9379,
2229
+ "step": 317
2230
+ },
2231
+ {
2232
+ "epoch": 2.25531914893617,
2233
+ "grad_norm": 0.18943147361278534,
2234
+ "learning_rate": 1.8001572974834169e-06,
2235
+ "loss": 0.9275,
2236
+ "step": 318
2237
+ },
2238
+ {
2239
+ "epoch": 2.2624113475177303,
2240
+ "grad_norm": 0.17720432579517365,
2241
+ "learning_rate": 1.7685038106952952e-06,
2242
+ "loss": 0.9148,
2243
+ "step": 319
2244
+ },
2245
+ {
2246
+ "epoch": 2.269503546099291,
2247
+ "grad_norm": 0.17993542551994324,
2248
+ "learning_rate": 1.7370711923791567e-06,
2249
+ "loss": 0.9403,
2250
+ "step": 320
2251
+ },
2252
+ {
2253
+ "epoch": 2.276595744680851,
2254
+ "grad_norm": 0.1805652678012848,
2255
+ "learning_rate": 1.7058615909127102e-06,
2256
+ "loss": 0.9404,
2257
+ "step": 321
2258
+ },
2259
+ {
2260
+ "epoch": 2.2836879432624113,
2261
+ "grad_norm": 0.1839425414800644,
2262
+ "learning_rate": 1.6748771394307584e-06,
2263
+ "loss": 0.949,
2264
+ "step": 322
2265
+ },
2266
+ {
2267
+ "epoch": 2.2907801418439715,
2268
+ "grad_norm": 0.18259738385677338,
2269
+ "learning_rate": 1.6441199556794036e-06,
2270
+ "loss": 0.9494,
2271
+ "step": 323
2272
+ },
2273
+ {
2274
+ "epoch": 2.297872340425532,
2275
+ "grad_norm": 0.1737503856420517,
2276
+ "learning_rate": 1.6135921418712959e-06,
2277
+ "loss": 0.941,
2278
+ "step": 324
2279
+ },
2280
+ {
2281
+ "epoch": 2.3049645390070923,
2282
+ "grad_norm": 0.18038944900035858,
2283
+ "learning_rate": 1.5832957845419583e-06,
2284
+ "loss": 0.9294,
2285
+ "step": 325
2286
+ },
2287
+ {
2288
+ "epoch": 2.3120567375886525,
2289
+ "grad_norm": 0.18109843134880066,
2290
+ "learning_rate": 1.5532329544071712e-06,
2291
+ "loss": 0.9169,
2292
+ "step": 326
2293
+ },
2294
+ {
2295
+ "epoch": 2.3191489361702127,
2296
+ "grad_norm": 0.18001320958137512,
2297
+ "learning_rate": 1.5234057062214403e-06,
2298
+ "loss": 0.8874,
2299
+ "step": 327
2300
+ },
2301
+ {
2302
+ "epoch": 2.326241134751773,
2303
+ "grad_norm": 0.1792004108428955,
2304
+ "learning_rate": 1.4938160786375571e-06,
2305
+ "loss": 0.9449,
2306
+ "step": 328
2307
+ },
2308
+ {
2309
+ "epoch": 2.3333333333333335,
2310
+ "grad_norm": 0.17555391788482666,
2311
+ "learning_rate": 1.4644660940672628e-06,
2312
+ "loss": 0.9435,
2313
+ "step": 329
2314
+ },
2315
+ {
2316
+ "epoch": 2.3404255319148937,
2317
+ "grad_norm": 0.17382599413394928,
2318
+ "learning_rate": 1.4353577585430152e-06,
2319
+ "loss": 0.9263,
2320
+ "step": 330
2321
+ },
2322
+ {
2323
+ "epoch": 2.347517730496454,
2324
+ "grad_norm": 0.17780086398124695,
2325
+ "learning_rate": 1.406493061580881e-06,
2326
+ "loss": 0.9481,
2327
+ "step": 331
2328
+ },
2329
+ {
2330
+ "epoch": 2.354609929078014,
2331
+ "grad_norm": 0.18043147027492523,
2332
+ "learning_rate": 1.3778739760445552e-06,
2333
+ "loss": 0.9431,
2334
+ "step": 332
2335
+ },
2336
+ {
2337
+ "epoch": 2.3617021276595747,
2338
+ "grad_norm": 0.19360171258449554,
2339
+ "learning_rate": 1.3495024580105193e-06,
2340
+ "loss": 0.9468,
2341
+ "step": 333
2342
+ },
2343
+ {
2344
+ "epoch": 2.368794326241135,
2345
+ "grad_norm": 0.18124336004257202,
2346
+ "learning_rate": 1.321380446634342e-06,
2347
+ "loss": 0.9493,
2348
+ "step": 334
2349
+ },
2350
+ {
2351
+ "epoch": 2.375886524822695,
2352
+ "grad_norm": 0.16850939393043518,
2353
+ "learning_rate": 1.293509864018146e-06,
2354
+ "loss": 0.9452,
2355
+ "step": 335
2356
+ },
2357
+ {
2358
+ "epoch": 2.382978723404255,
2359
+ "grad_norm": 0.17136213183403015,
2360
+ "learning_rate": 1.2658926150792321e-06,
2361
+ "loss": 0.9308,
2362
+ "step": 336
2363
+ },
2364
+ {
2365
+ "epoch": 2.3900709219858154,
2366
+ "grad_norm": 0.19403225183486938,
2367
+ "learning_rate": 1.2385305874198778e-06,
2368
+ "loss": 0.9544,
2369
+ "step": 337
2370
+ },
2371
+ {
2372
+ "epoch": 2.397163120567376,
2373
+ "grad_norm": 0.1776721477508545,
2374
+ "learning_rate": 1.2114256511983274e-06,
2375
+ "loss": 0.9473,
2376
+ "step": 338
2377
+ },
2378
+ {
2379
+ "epoch": 2.404255319148936,
2380
+ "grad_norm": 0.17469924688339233,
2381
+ "learning_rate": 1.1845796590009684e-06,
2382
+ "loss": 0.9388,
2383
+ "step": 339
2384
+ },
2385
+ {
2386
+ "epoch": 2.4113475177304964,
2387
+ "grad_norm": 0.17591865360736847,
2388
+ "learning_rate": 1.157994445715706e-06,
2389
+ "loss": 0.9247,
2390
+ "step": 340
2391
+ },
2392
+ {
2393
+ "epoch": 2.4184397163120566,
2394
+ "grad_norm": 0.17730483412742615,
2395
+ "learning_rate": 1.1316718284065536e-06,
2396
+ "loss": 0.9471,
2397
+ "step": 341
2398
+ },
2399
+ {
2400
+ "epoch": 2.425531914893617,
2401
+ "grad_norm": 0.1710953712463379,
2402
+ "learning_rate": 1.1056136061894386e-06,
2403
+ "loss": 0.9319,
2404
+ "step": 342
2405
+ },
2406
+ {
2407
+ "epoch": 2.4326241134751774,
2408
+ "grad_norm": 0.1860751360654831,
2409
+ "learning_rate": 1.0798215601092354e-06,
2410
+ "loss": 0.9283,
2411
+ "step": 343
2412
+ },
2413
+ {
2414
+ "epoch": 2.4397163120567376,
2415
+ "grad_norm": 0.17981447279453278,
2416
+ "learning_rate": 1.0542974530180327e-06,
2417
+ "loss": 0.9358,
2418
+ "step": 344
2419
+ },
2420
+ {
2421
+ "epoch": 2.4468085106382977,
2422
+ "grad_norm": 0.17886151373386383,
2423
+ "learning_rate": 1.0290430294546449e-06,
2424
+ "loss": 0.957,
2425
+ "step": 345
2426
+ },
2427
+ {
2428
+ "epoch": 2.453900709219858,
2429
+ "grad_norm": 0.18198616802692413,
2430
+ "learning_rate": 1.0040600155253766e-06,
2431
+ "loss": 0.9383,
2432
+ "step": 346
2433
+ },
2434
+ {
2435
+ "epoch": 2.4609929078014185,
2436
+ "grad_norm": 0.1727137714624405,
2437
+ "learning_rate": 9.793501187860432e-07,
2438
+ "loss": 0.9405,
2439
+ "step": 347
2440
+ },
2441
+ {
2442
+ "epoch": 2.4680851063829787,
2443
+ "grad_norm": 0.1783406287431717,
2444
+ "learning_rate": 9.549150281252633e-07,
2445
+ "loss": 0.925,
2446
+ "step": 348
2447
+ },
2448
+ {
2449
+ "epoch": 2.475177304964539,
2450
+ "grad_norm": 0.1867266297340393,
2451
+ "learning_rate": 9.307564136490255e-07,
2452
+ "loss": 0.9561,
2453
+ "step": 349
2454
+ },
2455
+ {
2456
+ "epoch": 2.482269503546099,
2457
+ "grad_norm": 0.1743844449520111,
2458
+ "learning_rate": 9.068759265665384e-07,
2459
+ "loss": 0.9438,
2460
+ "step": 350
2461
+ },
2462
+ {
2463
+ "epoch": 2.4893617021276597,
2464
+ "grad_norm": 0.18149304389953613,
2465
+ "learning_rate": 8.832751990773714e-07,
2466
+ "loss": 0.9382,
2467
+ "step": 351
2468
+ },
2469
+ {
2470
+ "epoch": 2.49645390070922,
2471
+ "grad_norm": 0.17251861095428467,
2472
+ "learning_rate": 8.599558442598998e-07,
2473
+ "loss": 0.9511,
2474
+ "step": 352
2475
+ },
2476
+ {
2477
+ "epoch": 2.50354609929078,
2478
+ "grad_norm": 0.18050801753997803,
2479
+ "learning_rate": 8.369194559610483e-07,
2480
+ "loss": 0.9428,
2481
+ "step": 353
2482
+ },
2483
+ {
2484
+ "epoch": 2.5106382978723403,
2485
+ "grad_norm": 0.17342498898506165,
2486
+ "learning_rate": 8.141676086873574e-07,
2487
+ "loss": 0.9181,
2488
+ "step": 354
2489
+ },
2490
+ {
2491
+ "epoch": 2.5177304964539005,
2492
+ "grad_norm": 0.17598570883274078,
2493
+ "learning_rate": 7.917018574973646e-07,
2494
+ "loss": 0.9198,
2495
+ "step": 355
2496
+ },
2497
+ {
2498
+ "epoch": 2.524822695035461,
2499
+ "grad_norm": 0.1778562217950821,
2500
+ "learning_rate": 7.695237378953224e-07,
2501
+ "loss": 0.9202,
2502
+ "step": 356
2503
+ },
2504
+ {
2505
+ "epoch": 2.5319148936170213,
2506
+ "grad_norm": 0.18783792853355408,
2507
+ "learning_rate": 7.476347657262456e-07,
2508
+ "loss": 0.9768,
2509
+ "step": 357
2510
+ },
2511
+ {
2512
+ "epoch": 2.5390070921985815,
2513
+ "grad_norm": 0.17972299456596375,
2514
+ "learning_rate": 7.260364370723044e-07,
2515
+ "loss": 0.9188,
2516
+ "step": 358
2517
+ },
2518
+ {
2519
+ "epoch": 2.546099290780142,
2520
+ "grad_norm": 0.17691974341869354,
2521
+ "learning_rate": 7.047302281505735e-07,
2522
+ "loss": 0.9454,
2523
+ "step": 359
2524
+ },
2525
+ {
2526
+ "epoch": 2.5531914893617023,
2527
+ "grad_norm": 0.17989806830883026,
2528
+ "learning_rate": 6.837175952121305e-07,
2529
+ "loss": 0.912,
2530
+ "step": 360
2531
+ },
2532
+ {
2533
+ "epoch": 2.5602836879432624,
2534
+ "grad_norm": 0.1767599880695343,
2535
+ "learning_rate": 6.629999744425236e-07,
2536
+ "loss": 0.9118,
2537
+ "step": 361
2538
+ },
2539
+ {
2540
+ "epoch": 2.5673758865248226,
2541
+ "grad_norm": 0.17483338713645935,
2542
+ "learning_rate": 6.425787818636131e-07,
2543
+ "loss": 0.9418,
2544
+ "step": 362
2545
+ },
2546
+ {
2547
+ "epoch": 2.574468085106383,
2548
+ "grad_norm": 0.17281189560890198,
2549
+ "learning_rate": 6.224554132367861e-07,
2550
+ "loss": 0.931,
2551
+ "step": 363
2552
+ },
2553
+ {
2554
+ "epoch": 2.581560283687943,
2555
+ "grad_norm": 0.17162910103797913,
2556
+ "learning_rate": 6.026312439675553e-07,
2557
+ "loss": 0.929,
2558
+ "step": 364
2559
+ },
2560
+ {
2561
+ "epoch": 2.5886524822695036,
2562
+ "grad_norm": 0.17338411509990692,
2563
+ "learning_rate": 5.831076290115572e-07,
2564
+ "loss": 0.9427,
2565
+ "step": 365
2566
+ },
2567
+ {
2568
+ "epoch": 2.595744680851064,
2569
+ "grad_norm": 0.17692013084888458,
2570
+ "learning_rate": 5.63885902781941e-07,
2571
+ "loss": 0.9449,
2572
+ "step": 366
2573
+ },
2574
+ {
2575
+ "epoch": 2.602836879432624,
2576
+ "grad_norm": 0.1654009222984314,
2577
+ "learning_rate": 5.449673790581611e-07,
2578
+ "loss": 0.9613,
2579
+ "step": 367
2580
+ },
2581
+ {
2582
+ "epoch": 2.6099290780141846,
2583
+ "grad_norm": 0.20816448330879211,
2584
+ "learning_rate": 5.263533508961827e-07,
2585
+ "loss": 0.958,
2586
+ "step": 368
2587
+ },
2588
+ {
2589
+ "epoch": 2.617021276595745,
2590
+ "grad_norm": 0.17404668033123016,
2591
+ "learning_rate": 5.080450905401057e-07,
2592
+ "loss": 0.9497,
2593
+ "step": 369
2594
+ },
2595
+ {
2596
+ "epoch": 2.624113475177305,
2597
+ "grad_norm": 0.17764751613140106,
2598
+ "learning_rate": 4.900438493352056e-07,
2599
+ "loss": 0.9436,
2600
+ "step": 370
2601
+ },
2602
+ {
2603
+ "epoch": 2.631205673758865,
2604
+ "grad_norm": 0.16908040642738342,
2605
+ "learning_rate": 4.723508576424063e-07,
2606
+ "loss": 0.9346,
2607
+ "step": 371
2608
+ },
2609
+ {
2610
+ "epoch": 2.6382978723404253,
2611
+ "grad_norm": 0.17620623111724854,
2612
+ "learning_rate": 4.549673247541875e-07,
2613
+ "loss": 0.9394,
2614
+ "step": 372
2615
+ },
2616
+ {
2617
+ "epoch": 2.645390070921986,
2618
+ "grad_norm": 0.17822693288326263,
2619
+ "learning_rate": 4.3789443881193107e-07,
2620
+ "loss": 0.9469,
2621
+ "step": 373
2622
+ },
2623
+ {
2624
+ "epoch": 2.652482269503546,
2625
+ "grad_norm": 0.17219433188438416,
2626
+ "learning_rate": 4.211333667247125e-07,
2627
+ "loss": 0.9541,
2628
+ "step": 374
2629
+ },
2630
+ {
2631
+ "epoch": 2.6595744680851063,
2632
+ "grad_norm": 0.17476940155029297,
2633
+ "learning_rate": 4.046852540895446e-07,
2634
+ "loss": 0.9304,
2635
+ "step": 375
2636
+ },
2637
+ {
2638
+ "epoch": 2.6666666666666665,
2639
+ "grad_norm": 0.16585884988307953,
2640
+ "learning_rate": 3.885512251130763e-07,
2641
+ "loss": 0.9144,
2642
+ "step": 376
2643
+ },
2644
+ {
2645
+ "epoch": 2.673758865248227,
2646
+ "grad_norm": 0.17504124343395233,
2647
+ "learning_rate": 3.7273238253475783e-07,
2648
+ "loss": 0.9349,
2649
+ "step": 377
2650
+ },
2651
+ {
2652
+ "epoch": 2.6808510638297873,
2653
+ "grad_norm": 0.17808987200260162,
2654
+ "learning_rate": 3.572298075514652e-07,
2655
+ "loss": 0.9283,
2656
+ "step": 378
2657
+ },
2658
+ {
2659
+ "epoch": 2.6879432624113475,
2660
+ "grad_norm": 0.17109963297843933,
2661
+ "learning_rate": 3.420445597436056e-07,
2662
+ "loss": 0.923,
2663
+ "step": 379
2664
+ },
2665
+ {
2666
+ "epoch": 2.6950354609929077,
2667
+ "grad_norm": 0.16899849474430084,
2668
+ "learning_rate": 3.271776770026963e-07,
2669
+ "loss": 0.9479,
2670
+ "step": 380
2671
+ },
2672
+ {
2673
+ "epoch": 2.702127659574468,
2674
+ "grad_norm": 0.16950707137584686,
2675
+ "learning_rate": 3.126301754604233e-07,
2676
+ "loss": 0.9423,
2677
+ "step": 381
2678
+ },
2679
+ {
2680
+ "epoch": 2.7092198581560285,
2681
+ "grad_norm": 0.16774339973926544,
2682
+ "learning_rate": 2.984030494191942e-07,
2683
+ "loss": 0.9665,
2684
+ "step": 382
2685
+ },
2686
+ {
2687
+ "epoch": 2.7163120567375887,
2688
+ "grad_norm": 0.17978820204734802,
2689
+ "learning_rate": 2.844972712841737e-07,
2690
+ "loss": 0.9649,
2691
+ "step": 383
2692
+ },
2693
+ {
2694
+ "epoch": 2.723404255319149,
2695
+ "grad_norm": 0.17238686978816986,
2696
+ "learning_rate": 2.7091379149682683e-07,
2697
+ "loss": 0.9391,
2698
+ "step": 384
2699
+ },
2700
+ {
2701
+ "epoch": 2.7304964539007095,
2702
+ "grad_norm": 0.17088578641414642,
2703
+ "learning_rate": 2.57653538469953e-07,
2704
+ "loss": 0.941,
2705
+ "step": 385
2706
+ },
2707
+ {
2708
+ "epoch": 2.7375886524822697,
2709
+ "grad_norm": 0.1665761023759842,
2710
+ "learning_rate": 2.447174185242324e-07,
2711
+ "loss": 0.9552,
2712
+ "step": 386
2713
+ },
2714
+ {
2715
+ "epoch": 2.74468085106383,
2716
+ "grad_norm": 0.17608121037483215,
2717
+ "learning_rate": 2.321063158262793e-07,
2718
+ "loss": 0.9385,
2719
+ "step": 387
2720
+ },
2721
+ {
2722
+ "epoch": 2.75177304964539,
2723
+ "grad_norm": 0.1641273945569992,
2724
+ "learning_rate": 2.198210923282118e-07,
2725
+ "loss": 0.926,
2726
+ "step": 388
2727
+ },
2728
+ {
2729
+ "epoch": 2.7588652482269502,
2730
+ "grad_norm": 0.17171336710453033,
2731
+ "learning_rate": 2.0786258770873647e-07,
2732
+ "loss": 0.932,
2733
+ "step": 389
2734
+ },
2735
+ {
2736
+ "epoch": 2.7659574468085104,
2737
+ "grad_norm": 0.16748470067977905,
2738
+ "learning_rate": 1.962316193157593e-07,
2739
+ "loss": 0.9418,
2740
+ "step": 390
2741
+ },
2742
+ {
2743
+ "epoch": 2.773049645390071,
2744
+ "grad_norm": 0.16219119727611542,
2745
+ "learning_rate": 1.849289821105199e-07,
2746
+ "loss": 0.9365,
2747
+ "step": 391
2748
+ },
2749
+ {
2750
+ "epoch": 2.780141843971631,
2751
+ "grad_norm": 0.1692589968442917,
2752
+ "learning_rate": 1.7395544861325718e-07,
2753
+ "loss": 0.9338,
2754
+ "step": 392
2755
+ },
2756
+ {
2757
+ "epoch": 2.7872340425531914,
2758
+ "grad_norm": 0.17481659352779388,
2759
+ "learning_rate": 1.6331176885040878e-07,
2760
+ "loss": 0.9732,
2761
+ "step": 393
2762
+ },
2763
+ {
2764
+ "epoch": 2.794326241134752,
2765
+ "grad_norm": 0.16948547959327698,
2766
+ "learning_rate": 1.5299867030334815e-07,
2767
+ "loss": 0.9352,
2768
+ "step": 394
2769
+ },
2770
+ {
2771
+ "epoch": 2.801418439716312,
2772
+ "grad_norm": 0.17257732152938843,
2773
+ "learning_rate": 1.4301685785866215e-07,
2774
+ "loss": 0.961,
2775
+ "step": 395
2776
+ },
2777
+ {
2778
+ "epoch": 2.8085106382978724,
2779
+ "grad_norm": 0.1700429916381836,
2780
+ "learning_rate": 1.333670137599713e-07,
2781
+ "loss": 0.9465,
2782
+ "step": 396
2783
+ },
2784
+ {
2785
+ "epoch": 2.8156028368794326,
2786
+ "grad_norm": 0.16693882644176483,
2787
+ "learning_rate": 1.2404979756130142e-07,
2788
+ "loss": 0.9416,
2789
+ "step": 397
2790
+ },
2791
+ {
2792
+ "epoch": 2.8226950354609928,
2793
+ "grad_norm": 0.16439220309257507,
2794
+ "learning_rate": 1.1506584608200366e-07,
2795
+ "loss": 0.9226,
2796
+ "step": 398
2797
+ },
2798
+ {
2799
+ "epoch": 2.829787234042553,
2800
+ "grad_norm": 0.1747705340385437,
2801
+ "learning_rate": 1.0641577336322761e-07,
2802
+ "loss": 0.9604,
2803
+ "step": 399
2804
+ },
2805
+ {
2806
+ "epoch": 2.8368794326241136,
2807
+ "grad_norm": 0.16952365636825562,
2808
+ "learning_rate": 9.810017062595322e-08,
2809
+ "loss": 0.9352,
2810
+ "step": 400
2811
+ },
2812
+ {
2813
+ "epoch": 2.8439716312056738,
2814
+ "grad_norm": 0.1762147843837738,
2815
+ "learning_rate": 9.011960623058202e-08,
2816
+ "loss": 0.9526,
2817
+ "step": 401
2818
+ },
2819
+ {
2820
+ "epoch": 2.851063829787234,
2821
+ "grad_norm": 0.1663467288017273,
2822
+ "learning_rate": 8.247462563808816e-08,
2823
+ "loss": 0.9287,
2824
+ "step": 402
2825
+ },
2826
+ {
2827
+ "epoch": 2.8581560283687946,
2828
+ "grad_norm": 0.1643829047679901,
2829
+ "learning_rate": 7.516575137274162e-08,
2830
+ "loss": 0.9366,
2831
+ "step": 403
2832
+ },
2833
+ {
2834
+ "epoch": 2.8652482269503547,
2835
+ "grad_norm": 0.16540059447288513,
2836
+ "learning_rate": 6.819348298638839e-08,
2837
+ "loss": 0.957,
2838
+ "step": 404
2839
+ },
2840
+ {
2841
+ "epoch": 2.872340425531915,
2842
+ "grad_norm": 0.1641610562801361,
2843
+ "learning_rate": 6.15582970243117e-08,
2844
+ "loss": 0.9502,
2845
+ "step": 405
2846
+ },
2847
+ {
2848
+ "epoch": 2.879432624113475,
2849
+ "grad_norm": 0.16954517364501953,
2850
+ "learning_rate": 5.526064699265754e-08,
2851
+ "loss": 0.9474,
2852
+ "step": 406
2853
+ },
2854
+ {
2855
+ "epoch": 2.8865248226950353,
2856
+ "grad_norm": 0.17791299521923065,
2857
+ "learning_rate": 4.930096332744105e-08,
2858
+ "loss": 0.9531,
2859
+ "step": 407
2860
+ },
2861
+ {
2862
+ "epoch": 2.8936170212765955,
2863
+ "grad_norm": 0.1743258535861969,
2864
+ "learning_rate": 4.367965336512403e-08,
2865
+ "loss": 0.965,
2866
+ "step": 408
2867
+ },
2868
+ {
2869
+ "epoch": 2.900709219858156,
2870
+ "grad_norm": 0.16537080705165863,
2871
+ "learning_rate": 3.839710131477492e-08,
2872
+ "loss": 0.9288,
2873
+ "step": 409
2874
+ },
2875
+ {
2876
+ "epoch": 2.9078014184397163,
2877
+ "grad_norm": 0.17257335782051086,
2878
+ "learning_rate": 3.345366823180929e-08,
2879
+ "loss": 0.9151,
2880
+ "step": 410
2881
+ },
2882
+ {
2883
+ "epoch": 2.9148936170212765,
2884
+ "grad_norm": 0.16965629160404205,
2885
+ "learning_rate": 2.884969199331178e-08,
2886
+ "loss": 0.8977,
2887
+ "step": 411
2888
+ },
2889
+ {
2890
+ "epoch": 2.921985815602837,
2891
+ "grad_norm": 0.16547615826129913,
2892
+ "learning_rate": 2.4585487274942922e-08,
2893
+ "loss": 0.9456,
2894
+ "step": 412
2895
+ },
2896
+ {
2897
+ "epoch": 2.9290780141843973,
2898
+ "grad_norm": 0.1668514609336853,
2899
+ "learning_rate": 2.0661345529430777e-08,
2900
+ "loss": 0.9371,
2901
+ "step": 413
2902
+ },
2903
+ {
2904
+ "epoch": 2.9361702127659575,
2905
+ "grad_norm": 0.175437793135643,
2906
+ "learning_rate": 1.7077534966650767e-08,
2907
+ "loss": 0.9365,
2908
+ "step": 414
2909
+ },
2910
+ {
2911
+ "epoch": 2.9432624113475176,
2912
+ "grad_norm": 0.16184265911579132,
2913
+ "learning_rate": 1.383430053529422e-08,
2914
+ "loss": 0.9164,
2915
+ "step": 415
2916
+ },
2917
+ {
2918
+ "epoch": 2.950354609929078,
2919
+ "grad_norm": 0.17287677526474,
2920
+ "learning_rate": 1.0931863906127327e-08,
2921
+ "loss": 0.9402,
2922
+ "step": 416
2923
+ },
2924
+ {
2925
+ "epoch": 2.9574468085106385,
2926
+ "grad_norm": 0.16356982290744781,
2927
+ "learning_rate": 8.37042345683714e-09,
2928
+ "loss": 0.9708,
2929
+ "step": 417
2930
+ },
2931
+ {
2932
+ "epoch": 2.9645390070921986,
2933
+ "grad_norm": 0.16705556213855743,
2934
+ "learning_rate": 6.150154258476315e-09,
2935
+ "loss": 0.9498,
2936
+ "step": 418
2937
+ },
2938
+ {
2939
+ "epoch": 2.971631205673759,
2940
+ "grad_norm": 0.1613406389951706,
2941
+ "learning_rate": 4.2712080634949024e-09,
2942
+ "loss": 0.9287,
2943
+ "step": 419
2944
+ },
2945
+ {
2946
+ "epoch": 2.978723404255319,
2947
+ "grad_norm": 0.1684153974056244,
2948
+ "learning_rate": 2.7337132953697555e-09,
2949
+ "loss": 0.9274,
2950
+ "step": 420
2951
+ },
2952
+ {
2953
+ "epoch": 2.9858156028368796,
2954
+ "grad_norm": 0.16626179218292236,
2955
+ "learning_rate": 1.53777503982655e-09,
2956
+ "loss": 0.9243,
2957
+ "step": 421
2958
+ },
2959
+ {
2960
+ "epoch": 2.99290780141844,
2961
+ "grad_norm": 0.17238499224185944,
2962
+ "learning_rate": 6.834750376549793e-10,
2963
+ "loss": 0.9477,
2964
+ "step": 422
2965
+ },
2966
+ {
2967
+ "epoch": 3.0,
2968
+ "grad_norm": 0.16570501029491425,
2969
+ "learning_rate": 1.7087167912710477e-10,
2970
+ "loss": 0.9324,
2971
+ "step": 423
2972
+ }
2973
+ ],
2974
+ "logging_steps": 1,
2975
+ "max_steps": 423,
2976
+ "num_input_tokens_seen": 0,
2977
+ "num_train_epochs": 3,
2978
+ "save_steps": 500,
2979
+ "stateful_callbacks": {
2980
+ "TrainerControl": {
2981
+ "args": {
2982
+ "should_epoch_stop": false,
2983
+ "should_evaluate": false,
2984
+ "should_log": false,
2985
+ "should_save": true,
2986
+ "should_training_stop": true
2987
+ },
2988
+ "attributes": {}
2989
+ }
2990
+ },
2991
+ "total_flos": 2261545899786240.0,
2992
+ "train_batch_size": 1,
2993
+ "trial_name": null,
2994
+ "trial_params": null
2995
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:810e0b0f68ae49671684020f373cd047296dd4f8f9f1464d80c2484ee310f1e0
3
+ size 7736
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)