Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +28 -0
- chat_template.jinja +89 -0
- config.json +30 -0
- generation_config.json +13 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00006.safetensors +3 -0
- model-00002-of-00006.safetensors +3 -0
- model-00003-of-00006.safetensors +3 -0
- model-00004-of-00006.safetensors +3 -0
- model-00005-of-00006.safetensors +3 -0
- model-00006-of-00006.safetensors +3 -0
- model.safetensors.index.json +450 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +240 -0
- trainer_state.json +2995 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +674 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</think>": 151668,
|
| 3 |
+
"</tool_call>": 151658,
|
| 4 |
+
"</tool_response>": 151666,
|
| 5 |
+
"<think>": 151667,
|
| 6 |
+
"<tool_call>": 151657,
|
| 7 |
+
"<tool_response>": 151665,
|
| 8 |
+
"<|box_end|>": 151649,
|
| 9 |
+
"<|box_start|>": 151648,
|
| 10 |
+
"<|endoftext|>": 151643,
|
| 11 |
+
"<|file_sep|>": 151664,
|
| 12 |
+
"<|fim_middle|>": 151660,
|
| 13 |
+
"<|fim_pad|>": 151662,
|
| 14 |
+
"<|fim_prefix|>": 151659,
|
| 15 |
+
"<|fim_suffix|>": 151661,
|
| 16 |
+
"<|im_end|>": 151645,
|
| 17 |
+
"<|im_start|>": 151644,
|
| 18 |
+
"<|image_pad|>": 151655,
|
| 19 |
+
"<|object_ref_end|>": 151647,
|
| 20 |
+
"<|object_ref_start|>": 151646,
|
| 21 |
+
"<|quad_end|>": 151651,
|
| 22 |
+
"<|quad_start|>": 151650,
|
| 23 |
+
"<|repo_name|>": 151663,
|
| 24 |
+
"<|video_pad|>": 151656,
|
| 25 |
+
"<|vision_end|>": 151653,
|
| 26 |
+
"<|vision_pad|>": 151654,
|
| 27 |
+
"<|vision_start|>": 151652
|
| 28 |
+
}
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0].role == 'system' %}
|
| 4 |
+
{{- messages[0].content + '\n\n' }}
|
| 5 |
+
{%- endif %}
|
| 6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 7 |
+
{%- for tool in tools %}
|
| 8 |
+
{{- "\n" }}
|
| 9 |
+
{{- tool | tojson }}
|
| 10 |
+
{%- endfor %}
|
| 11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 12 |
+
{%- else %}
|
| 13 |
+
{%- if messages[0].role == 'system' %}
|
| 14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
| 15 |
+
{%- endif %}
|
| 16 |
+
{%- endif %}
|
| 17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
| 18 |
+
{%- for message in messages[::-1] %}
|
| 19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
| 20 |
+
{%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
| 21 |
+
{%- set ns.multi_step_tool = false %}
|
| 22 |
+
{%- set ns.last_query_index = index %}
|
| 23 |
+
{%- endif %}
|
| 24 |
+
{%- endfor %}
|
| 25 |
+
{%- for message in messages %}
|
| 26 |
+
{%- if message.content is string %}
|
| 27 |
+
{%- set content = message.content %}
|
| 28 |
+
{%- else %}
|
| 29 |
+
{%- set content = '' %}
|
| 30 |
+
{%- endif %}
|
| 31 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
| 32 |
+
{{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
|
| 33 |
+
{%- elif message.role == "assistant" %}
|
| 34 |
+
{%- set reasoning_content = '' %}
|
| 35 |
+
{%- if message.reasoning_content is string %}
|
| 36 |
+
{%- set reasoning_content = message.reasoning_content %}
|
| 37 |
+
{%- else %}
|
| 38 |
+
{%- if '</think>' in content %}
|
| 39 |
+
{%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
| 40 |
+
{%- set content = content.split('</think>')[-1].lstrip('\n') %}
|
| 41 |
+
{%- endif %}
|
| 42 |
+
{%- endif %}
|
| 43 |
+
{%- if loop.index0 > ns.last_query_index %}
|
| 44 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
| 45 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
| 46 |
+
{%- else %}
|
| 47 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
| 48 |
+
{%- endif %}
|
| 49 |
+
{%- else %}
|
| 50 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
| 51 |
+
{%- endif %}
|
| 52 |
+
{%- if message.tool_calls %}
|
| 53 |
+
{%- for tool_call in message.tool_calls %}
|
| 54 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
| 55 |
+
{{- '\n' }}
|
| 56 |
+
{%- endif %}
|
| 57 |
+
{%- if tool_call.function %}
|
| 58 |
+
{%- set tool_call = tool_call.function %}
|
| 59 |
+
{%- endif %}
|
| 60 |
+
{{- '<tool_call>\n{"name": "' }}
|
| 61 |
+
{{- tool_call.name }}
|
| 62 |
+
{{- '", "arguments": ' }}
|
| 63 |
+
{%- if tool_call.arguments is string %}
|
| 64 |
+
{{- tool_call.arguments }}
|
| 65 |
+
{%- else %}
|
| 66 |
+
{{- tool_call.arguments | tojson }}
|
| 67 |
+
{%- endif %}
|
| 68 |
+
{{- '}\n</tool_call>' }}
|
| 69 |
+
{%- endfor %}
|
| 70 |
+
{%- endif %}
|
| 71 |
+
{{- '<|im_end|>\n' }}
|
| 72 |
+
{%- elif message.role == "tool" %}
|
| 73 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
| 74 |
+
{{- '<|im_start|>user' }}
|
| 75 |
+
{%- endif %}
|
| 76 |
+
{{- '\n<tool_response>\n' }}
|
| 77 |
+
{{- content }}
|
| 78 |
+
{{- '\n</tool_response>' }}
|
| 79 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 80 |
+
{{- '<|im_end|>\n' }}
|
| 81 |
+
{%- endif %}
|
| 82 |
+
{%- endif %}
|
| 83 |
+
{%- endfor %}
|
| 84 |
+
{%- if add_generation_prompt %}
|
| 85 |
+
{{- '<|im_start|>assistant\n' }}
|
| 86 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
| 87 |
+
{{- '<think>\n\n</think>\n\n' }}
|
| 88 |
+
{%- endif %}
|
| 89 |
+
{%- endif %}
|
config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen3ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151645,
|
| 9 |
+
"head_dim": 128,
|
| 10 |
+
"hidden_act": "silu",
|
| 11 |
+
"hidden_size": 5120,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 17408,
|
| 14 |
+
"max_position_embeddings": 40960,
|
| 15 |
+
"max_window_layers": 40,
|
| 16 |
+
"model_type": "qwen3",
|
| 17 |
+
"num_attention_heads": 40,
|
| 18 |
+
"num_hidden_layers": 40,
|
| 19 |
+
"num_key_value_heads": 8,
|
| 20 |
+
"rms_norm_eps": 1e-06,
|
| 21 |
+
"rope_scaling": null,
|
| 22 |
+
"rope_theta": 1000000,
|
| 23 |
+
"sliding_window": null,
|
| 24 |
+
"tie_word_embeddings": false,
|
| 25 |
+
"torch_dtype": "bfloat16",
|
| 26 |
+
"transformers_version": "4.52.4",
|
| 27 |
+
"use_cache": false,
|
| 28 |
+
"use_sliding_window": false,
|
| 29 |
+
"vocab_size": 151936
|
| 30 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"temperature": 0.6,
|
| 10 |
+
"top_k": 20,
|
| 11 |
+
"top_p": 0.95,
|
| 12 |
+
"transformers_version": "4.52.4"
|
| 13 |
+
}
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step423
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34d5e5f2d4bcda48455cbda64f3d7214b908a099abf26c009fe12736c3a3bf60
|
| 3 |
+
size 4984780784
|
model-00002-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2c3c578b448a961bdbe06d97b5a96540e958a50264a214fb9f80f15917b722c0
|
| 3 |
+
size 4980892048
|
model-00003-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:68e82ac3f41259912b0979248ab5f536f29c75f4f9f2efd341ec6b199e5ecafd
|
| 3 |
+
size 4928485104
|
model-00004-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bb8bd69ce548a74e7b6ccd78bcf879ee4a2816dd9920c1f780e91b609ef45d12
|
| 3 |
+
size 4980892112
|
model-00005-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5a2b44061365f52912ff11ecf42b6814cd5eca26bf785deb15e1b1e5c5b785dd
|
| 3 |
+
size 4928485104
|
model-00006-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3759900e57a0d8a16d713ca14fade334c482ce4ee23d85601d8f5cc898b50cb2
|
| 3 |
+
size 4733130504
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 29536614400
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 30 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 31 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 32 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 33 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 34 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 35 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
| 36 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 41 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 42 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 43 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 44 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 45 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 46 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
| 47 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 48 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 52 |
+
"model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 53 |
+
"model.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 54 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 55 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 56 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 57 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
| 58 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 59 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 60 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 63 |
+
"model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 64 |
+
"model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 65 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 66 |
+
"model.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 67 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 68 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
| 69 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 70 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 71 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
| 72 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 74 |
+
"model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 75 |
+
"model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 76 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 77 |
+
"model.layers.14.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 78 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 79 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
| 80 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 81 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 82 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
| 83 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 84 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 85 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 86 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 87 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 88 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 89 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 90 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
| 91 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 92 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 93 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
| 94 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 95 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 96 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 97 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 98 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 99 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 100 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 101 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
| 102 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 103 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 104 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
| 105 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 106 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 107 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 108 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 109 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 110 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 111 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 112 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
| 113 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 114 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 115 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
| 116 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 117 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 118 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 119 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 120 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 121 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 122 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 123 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
| 124 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 125 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 126 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
| 127 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 128 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 129 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 130 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 131 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 132 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 133 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 134 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
| 135 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 136 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 137 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
| 138 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 139 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 140 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 141 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 142 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 143 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 144 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 145 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
| 146 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 147 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 148 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
| 149 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 150 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 151 |
+
"model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 152 |
+
"model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 153 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 154 |
+
"model.layers.20.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 155 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 156 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
| 157 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 158 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 159 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
| 160 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 161 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 162 |
+
"model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 163 |
+
"model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 164 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 165 |
+
"model.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 166 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 167 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
| 168 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 169 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 170 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
| 171 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 172 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 173 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 174 |
+
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 175 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 176 |
+
"model.layers.22.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 177 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 178 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
| 179 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 180 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 181 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
| 182 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 183 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 184 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 185 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 186 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 187 |
+
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 188 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 189 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
| 190 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 191 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 192 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
| 193 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 194 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 195 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 196 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 197 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 198 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 199 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 200 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
| 201 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 202 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 203 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
| 204 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 205 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 206 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 207 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 208 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 209 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 210 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 211 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
| 212 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 213 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 214 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
| 215 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 216 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 217 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 218 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 219 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 220 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 221 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 222 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
| 223 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 224 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 225 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
| 226 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 227 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 228 |
+
"model.layers.27.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 229 |
+
"model.layers.27.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 230 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 231 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 232 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 233 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
| 234 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 235 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 236 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
| 237 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 238 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 239 |
+
"model.layers.28.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 240 |
+
"model.layers.28.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 241 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 242 |
+
"model.layers.28.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 243 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 244 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
| 245 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 246 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 247 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
| 248 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 249 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 250 |
+
"model.layers.29.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 251 |
+
"model.layers.29.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 252 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 253 |
+
"model.layers.29.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 254 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 255 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
| 256 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 257 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 258 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
| 259 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 260 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 261 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 262 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 263 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 264 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 265 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 266 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
| 267 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 268 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 269 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
| 270 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 272 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 273 |
+
"model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 274 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 275 |
+
"model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 276 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 277 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
| 278 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 279 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 280 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
| 281 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 282 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 283 |
+
"model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 284 |
+
"model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 285 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 286 |
+
"model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 287 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 288 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
| 289 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 290 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 291 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
| 292 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 293 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 294 |
+
"model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 295 |
+
"model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 296 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 297 |
+
"model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 298 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 299 |
+
"model.layers.32.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
| 300 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 301 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 302 |
+
"model.layers.32.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
| 303 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 304 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 305 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 306 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 307 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 308 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 309 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 310 |
+
"model.layers.33.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
| 311 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 312 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 313 |
+
"model.layers.33.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
| 314 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 315 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 316 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 317 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 318 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 319 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 320 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 321 |
+
"model.layers.34.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
| 322 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 323 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 324 |
+
"model.layers.34.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
| 325 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 326 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 327 |
+
"model.layers.35.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 328 |
+
"model.layers.35.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 329 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 330 |
+
"model.layers.35.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 331 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 332 |
+
"model.layers.35.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
| 333 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 334 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 335 |
+
"model.layers.35.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
| 336 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 337 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 338 |
+
"model.layers.36.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 339 |
+
"model.layers.36.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 340 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 341 |
+
"model.layers.36.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 342 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 343 |
+
"model.layers.36.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
|
| 344 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
| 345 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
| 346 |
+
"model.layers.36.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
|
| 347 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
| 348 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
| 349 |
+
"model.layers.37.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 350 |
+
"model.layers.37.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 351 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 352 |
+
"model.layers.37.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 353 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 354 |
+
"model.layers.37.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
|
| 355 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
| 356 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
| 357 |
+
"model.layers.37.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
|
| 358 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
| 359 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
| 360 |
+
"model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 361 |
+
"model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 362 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 363 |
+
"model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 364 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 365 |
+
"model.layers.38.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
|
| 366 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
| 367 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
| 368 |
+
"model.layers.38.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
|
| 369 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
| 370 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
| 371 |
+
"model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 372 |
+
"model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 373 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 374 |
+
"model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 375 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 376 |
+
"model.layers.39.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
|
| 377 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
| 378 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
| 379 |
+
"model.layers.39.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
|
| 380 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
| 381 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
| 382 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 383 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 384 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 385 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 386 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 387 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
| 388 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 389 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 390 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
| 391 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 392 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 393 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 394 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 395 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 396 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 397 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 398 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
| 399 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 400 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 401 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
| 402 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 403 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 404 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 405 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 406 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 407 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 408 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 409 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
| 410 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 411 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 412 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
| 413 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 414 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 415 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 416 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 417 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 418 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 419 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 420 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
| 421 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 422 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 423 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
| 424 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 425 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 426 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 427 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 428 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 429 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 430 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 431 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
| 432 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 433 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 434 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
| 435 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 436 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 437 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 438 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 439 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 440 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 441 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 442 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
| 443 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 444 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 445 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
| 446 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 447 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 448 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
| 449 |
+
}
|
| 450 |
+
}
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:308f94f9a5c24e1bad5c393d56ae7af7782600f4e791d9c6ac35b22fff2105b6
|
| 3 |
+
size 15024
|
rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b056f3c23cb32dc77a2ec9e7651e0b64e4440e21f0fdf969b86bfc56a1cbdf06
|
| 3 |
+
size 15024
|
rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f3f8a05714bc528f4885a2816181652f2303b3e8150f89b56aaee6bec56aa520
|
| 3 |
+
size 15024
|
rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4f755bd3c330281961e5c03af9d10ce8c1e1678619d384f6f1fd5fd7dce2ff50
|
| 3 |
+
size 15024
|
rng_state_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b98b34c8624255c142ef1c289afeb46d84dfd96034098c99fe5529111f5e33f7
|
| 3 |
+
size 15024
|
rng_state_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:47949b0df2efc08ab690d6d3675a5d87b18a30a2fb6a1372cc245bf32aa806b4
|
| 3 |
+
size 15024
|
rng_state_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:82a0af955ccdfcc8ba1821a24e8c3dee9ef313357c358ff1e60fc2c2be21e5a4
|
| 3 |
+
size 15024
|
rng_state_7.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cf3256237cabc84ea9fffa73e0da6d748f96838812078792b22874b902e4bf73
|
| 3 |
+
size 15024
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c1a3ba8f11ffd29fde0abe0b3d718b68e1880da2949edbed2a0d7c4fc632903
|
| 3 |
+
size 1064
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
| 3 |
+
size 11422654
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "<tool_response>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "</tool_response>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"151667": {
|
| 198 |
+
"content": "<think>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"151668": {
|
| 206 |
+
"content": "</think>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
}
|
| 213 |
+
},
|
| 214 |
+
"additional_special_tokens": [
|
| 215 |
+
"<|im_start|>",
|
| 216 |
+
"<|im_end|>",
|
| 217 |
+
"<|object_ref_start|>",
|
| 218 |
+
"<|object_ref_end|>",
|
| 219 |
+
"<|box_start|>",
|
| 220 |
+
"<|box_end|>",
|
| 221 |
+
"<|quad_start|>",
|
| 222 |
+
"<|quad_end|>",
|
| 223 |
+
"<|vision_start|>",
|
| 224 |
+
"<|vision_end|>",
|
| 225 |
+
"<|vision_pad|>",
|
| 226 |
+
"<|image_pad|>",
|
| 227 |
+
"<|video_pad|>"
|
| 228 |
+
],
|
| 229 |
+
"bos_token": null,
|
| 230 |
+
"clean_up_tokenization_spaces": false,
|
| 231 |
+
"eos_token": "<|im_end|>",
|
| 232 |
+
"errors": "replace",
|
| 233 |
+
"extra_special_tokens": {},
|
| 234 |
+
"model_max_length": 131072,
|
| 235 |
+
"pad_token": "<|endoftext|>",
|
| 236 |
+
"padding_side": "right",
|
| 237 |
+
"split_special_tokens": false,
|
| 238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 239 |
+
"unk_token": null
|
| 240 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,2995 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 3.0,
|
| 6 |
+
"eval_steps": 500,
|
| 7 |
+
"global_step": 423,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.0070921985815602835,
|
| 14 |
+
"grad_norm": 5.777980327606201,
|
| 15 |
+
"learning_rate": 0.0,
|
| 16 |
+
"loss": 1.6312,
|
| 17 |
+
"step": 1
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.014184397163120567,
|
| 21 |
+
"grad_norm": 5.754700660705566,
|
| 22 |
+
"learning_rate": 2.3255813953488374e-07,
|
| 23 |
+
"loss": 1.65,
|
| 24 |
+
"step": 2
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.02127659574468085,
|
| 28 |
+
"grad_norm": 5.919105529785156,
|
| 29 |
+
"learning_rate": 4.651162790697675e-07,
|
| 30 |
+
"loss": 1.6812,
|
| 31 |
+
"step": 3
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 0.028368794326241134,
|
| 35 |
+
"grad_norm": 5.887588977813721,
|
| 36 |
+
"learning_rate": 6.976744186046513e-07,
|
| 37 |
+
"loss": 1.7015,
|
| 38 |
+
"step": 4
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.03546099290780142,
|
| 42 |
+
"grad_norm": 5.932762622833252,
|
| 43 |
+
"learning_rate": 9.30232558139535e-07,
|
| 44 |
+
"loss": 1.6648,
|
| 45 |
+
"step": 5
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.0425531914893617,
|
| 49 |
+
"grad_norm": 5.459700584411621,
|
| 50 |
+
"learning_rate": 1.1627906976744188e-06,
|
| 51 |
+
"loss": 1.6356,
|
| 52 |
+
"step": 6
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"epoch": 0.04964539007092199,
|
| 56 |
+
"grad_norm": 5.5110764503479,
|
| 57 |
+
"learning_rate": 1.3953488372093025e-06,
|
| 58 |
+
"loss": 1.642,
|
| 59 |
+
"step": 7
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 0.05673758865248227,
|
| 63 |
+
"grad_norm": 4.986560344696045,
|
| 64 |
+
"learning_rate": 1.6279069767441862e-06,
|
| 65 |
+
"loss": 1.6056,
|
| 66 |
+
"step": 8
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.06382978723404255,
|
| 70 |
+
"grad_norm": 4.967083930969238,
|
| 71 |
+
"learning_rate": 1.86046511627907e-06,
|
| 72 |
+
"loss": 1.6179,
|
| 73 |
+
"step": 9
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.07092198581560284,
|
| 77 |
+
"grad_norm": 3.372753143310547,
|
| 78 |
+
"learning_rate": 2.0930232558139536e-06,
|
| 79 |
+
"loss": 1.5471,
|
| 80 |
+
"step": 10
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.07801418439716312,
|
| 84 |
+
"grad_norm": 3.3070132732391357,
|
| 85 |
+
"learning_rate": 2.3255813953488376e-06,
|
| 86 |
+
"loss": 1.5119,
|
| 87 |
+
"step": 11
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.0851063829787234,
|
| 91 |
+
"grad_norm": 2.9118688106536865,
|
| 92 |
+
"learning_rate": 2.558139534883721e-06,
|
| 93 |
+
"loss": 1.4956,
|
| 94 |
+
"step": 12
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"epoch": 0.09219858156028368,
|
| 98 |
+
"grad_norm": 2.111111879348755,
|
| 99 |
+
"learning_rate": 2.790697674418605e-06,
|
| 100 |
+
"loss": 1.4849,
|
| 101 |
+
"step": 13
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"epoch": 0.09929078014184398,
|
| 105 |
+
"grad_norm": 1.896662712097168,
|
| 106 |
+
"learning_rate": 3.0232558139534885e-06,
|
| 107 |
+
"loss": 1.4593,
|
| 108 |
+
"step": 14
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 0.10638297872340426,
|
| 112 |
+
"grad_norm": 1.8128881454467773,
|
| 113 |
+
"learning_rate": 3.2558139534883724e-06,
|
| 114 |
+
"loss": 1.4569,
|
| 115 |
+
"step": 15
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.11347517730496454,
|
| 119 |
+
"grad_norm": 1.6560497283935547,
|
| 120 |
+
"learning_rate": 3.4883720930232564e-06,
|
| 121 |
+
"loss": 1.4258,
|
| 122 |
+
"step": 16
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.12056737588652482,
|
| 126 |
+
"grad_norm": 1.5061492919921875,
|
| 127 |
+
"learning_rate": 3.72093023255814e-06,
|
| 128 |
+
"loss": 1.3646,
|
| 129 |
+
"step": 17
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.1276595744680851,
|
| 133 |
+
"grad_norm": 1.4421842098236084,
|
| 134 |
+
"learning_rate": 3.953488372093024e-06,
|
| 135 |
+
"loss": 1.3759,
|
| 136 |
+
"step": 18
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"epoch": 0.1347517730496454,
|
| 140 |
+
"grad_norm": 1.6656174659729004,
|
| 141 |
+
"learning_rate": 4.186046511627907e-06,
|
| 142 |
+
"loss": 1.346,
|
| 143 |
+
"step": 19
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"epoch": 0.14184397163120568,
|
| 147 |
+
"grad_norm": 1.5938531160354614,
|
| 148 |
+
"learning_rate": 4.418604651162791e-06,
|
| 149 |
+
"loss": 1.3267,
|
| 150 |
+
"step": 20
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"epoch": 0.14893617021276595,
|
| 154 |
+
"grad_norm": 1.4535658359527588,
|
| 155 |
+
"learning_rate": 4.651162790697675e-06,
|
| 156 |
+
"loss": 1.3159,
|
| 157 |
+
"step": 21
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"epoch": 0.15602836879432624,
|
| 161 |
+
"grad_norm": 1.2296608686447144,
|
| 162 |
+
"learning_rate": 4.883720930232559e-06,
|
| 163 |
+
"loss": 1.3144,
|
| 164 |
+
"step": 22
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 0.16312056737588654,
|
| 168 |
+
"grad_norm": 1.0187760591506958,
|
| 169 |
+
"learning_rate": 5.116279069767442e-06,
|
| 170 |
+
"loss": 1.2738,
|
| 171 |
+
"step": 23
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.1702127659574468,
|
| 175 |
+
"grad_norm": 0.7561401724815369,
|
| 176 |
+
"learning_rate": 5.348837209302326e-06,
|
| 177 |
+
"loss": 1.2752,
|
| 178 |
+
"step": 24
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"epoch": 0.1773049645390071,
|
| 182 |
+
"grad_norm": 0.7404045462608337,
|
| 183 |
+
"learning_rate": 5.58139534883721e-06,
|
| 184 |
+
"loss": 1.2338,
|
| 185 |
+
"step": 25
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 0.18439716312056736,
|
| 189 |
+
"grad_norm": 0.8450738787651062,
|
| 190 |
+
"learning_rate": 5.8139534883720935e-06,
|
| 191 |
+
"loss": 1.1847,
|
| 192 |
+
"step": 26
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"epoch": 0.19148936170212766,
|
| 196 |
+
"grad_norm": 0.8557640910148621,
|
| 197 |
+
"learning_rate": 6.046511627906977e-06,
|
| 198 |
+
"loss": 1.2414,
|
| 199 |
+
"step": 27
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"epoch": 0.19858156028368795,
|
| 203 |
+
"grad_norm": 0.7255589365959167,
|
| 204 |
+
"learning_rate": 6.279069767441861e-06,
|
| 205 |
+
"loss": 1.1874,
|
| 206 |
+
"step": 28
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.20567375886524822,
|
| 210 |
+
"grad_norm": 0.6485627889633179,
|
| 211 |
+
"learning_rate": 6.511627906976745e-06,
|
| 212 |
+
"loss": 1.2164,
|
| 213 |
+
"step": 29
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 0.2127659574468085,
|
| 217 |
+
"grad_norm": 0.5685610175132751,
|
| 218 |
+
"learning_rate": 6.744186046511628e-06,
|
| 219 |
+
"loss": 1.1576,
|
| 220 |
+
"step": 30
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"epoch": 0.2198581560283688,
|
| 224 |
+
"grad_norm": 0.5513559579849243,
|
| 225 |
+
"learning_rate": 6.976744186046513e-06,
|
| 226 |
+
"loss": 1.1599,
|
| 227 |
+
"step": 31
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"epoch": 0.22695035460992907,
|
| 231 |
+
"grad_norm": 0.5789648294448853,
|
| 232 |
+
"learning_rate": 7.209302325581395e-06,
|
| 233 |
+
"loss": 1.1577,
|
| 234 |
+
"step": 32
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"epoch": 0.23404255319148937,
|
| 238 |
+
"grad_norm": 0.5217244625091553,
|
| 239 |
+
"learning_rate": 7.44186046511628e-06,
|
| 240 |
+
"loss": 1.1636,
|
| 241 |
+
"step": 33
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"epoch": 0.24113475177304963,
|
| 245 |
+
"grad_norm": 0.48746103048324585,
|
| 246 |
+
"learning_rate": 7.674418604651164e-06,
|
| 247 |
+
"loss": 1.1309,
|
| 248 |
+
"step": 34
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 0.24822695035460993,
|
| 252 |
+
"grad_norm": 0.4570249319076538,
|
| 253 |
+
"learning_rate": 7.906976744186048e-06,
|
| 254 |
+
"loss": 1.129,
|
| 255 |
+
"step": 35
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"epoch": 0.2553191489361702,
|
| 259 |
+
"grad_norm": 0.48672929406166077,
|
| 260 |
+
"learning_rate": 8.139534883720931e-06,
|
| 261 |
+
"loss": 1.1536,
|
| 262 |
+
"step": 36
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"epoch": 0.2624113475177305,
|
| 266 |
+
"grad_norm": 0.4759041666984558,
|
| 267 |
+
"learning_rate": 8.372093023255815e-06,
|
| 268 |
+
"loss": 1.1194,
|
| 269 |
+
"step": 37
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"epoch": 0.2695035460992908,
|
| 273 |
+
"grad_norm": 0.44275835156440735,
|
| 274 |
+
"learning_rate": 8.604651162790698e-06,
|
| 275 |
+
"loss": 1.1007,
|
| 276 |
+
"step": 38
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"epoch": 0.2765957446808511,
|
| 280 |
+
"grad_norm": 0.4226142466068268,
|
| 281 |
+
"learning_rate": 8.837209302325582e-06,
|
| 282 |
+
"loss": 1.1255,
|
| 283 |
+
"step": 39
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"epoch": 0.28368794326241137,
|
| 287 |
+
"grad_norm": 0.35801962018013,
|
| 288 |
+
"learning_rate": 9.069767441860465e-06,
|
| 289 |
+
"loss": 1.1091,
|
| 290 |
+
"step": 40
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.2907801418439716,
|
| 294 |
+
"grad_norm": 0.33172303438186646,
|
| 295 |
+
"learning_rate": 9.30232558139535e-06,
|
| 296 |
+
"loss": 1.0927,
|
| 297 |
+
"step": 41
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.2978723404255319,
|
| 301 |
+
"grad_norm": 0.3826102912425995,
|
| 302 |
+
"learning_rate": 9.534883720930234e-06,
|
| 303 |
+
"loss": 1.115,
|
| 304 |
+
"step": 42
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"epoch": 0.3049645390070922,
|
| 308 |
+
"grad_norm": 0.37179189920425415,
|
| 309 |
+
"learning_rate": 9.767441860465117e-06,
|
| 310 |
+
"loss": 1.0644,
|
| 311 |
+
"step": 43
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"epoch": 0.3120567375886525,
|
| 315 |
+
"grad_norm": 0.3904111981391907,
|
| 316 |
+
"learning_rate": 1e-05,
|
| 317 |
+
"loss": 1.0932,
|
| 318 |
+
"step": 44
|
| 319 |
+
},
|
| 320 |
+
{
|
| 321 |
+
"epoch": 0.3191489361702128,
|
| 322 |
+
"grad_norm": 0.3148801326751709,
|
| 323 |
+
"learning_rate": 9.999829128320873e-06,
|
| 324 |
+
"loss": 1.1085,
|
| 325 |
+
"step": 45
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"epoch": 0.3262411347517731,
|
| 329 |
+
"grad_norm": 0.3012698292732239,
|
| 330 |
+
"learning_rate": 9.999316524962347e-06,
|
| 331 |
+
"loss": 1.0673,
|
| 332 |
+
"step": 46
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 0.3333333333333333,
|
| 336 |
+
"grad_norm": 0.2862606346607208,
|
| 337 |
+
"learning_rate": 9.998462224960176e-06,
|
| 338 |
+
"loss": 1.0918,
|
| 339 |
+
"step": 47
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 0.3404255319148936,
|
| 343 |
+
"grad_norm": 0.2962920069694519,
|
| 344 |
+
"learning_rate": 9.99726628670463e-06,
|
| 345 |
+
"loss": 1.0914,
|
| 346 |
+
"step": 48
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 0.3475177304964539,
|
| 350 |
+
"grad_norm": 0.290487140417099,
|
| 351 |
+
"learning_rate": 9.995728791936505e-06,
|
| 352 |
+
"loss": 1.086,
|
| 353 |
+
"step": 49
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"epoch": 0.3546099290780142,
|
| 357 |
+
"grad_norm": 0.2692384123802185,
|
| 358 |
+
"learning_rate": 9.993849845741525e-06,
|
| 359 |
+
"loss": 1.0647,
|
| 360 |
+
"step": 50
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 0.3617021276595745,
|
| 364 |
+
"grad_norm": 0.2540633976459503,
|
| 365 |
+
"learning_rate": 9.991629576543164e-06,
|
| 366 |
+
"loss": 1.0528,
|
| 367 |
+
"step": 51
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.36879432624113473,
|
| 371 |
+
"grad_norm": 0.23808936774730682,
|
| 372 |
+
"learning_rate": 9.989068136093873e-06,
|
| 373 |
+
"loss": 1.0747,
|
| 374 |
+
"step": 52
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.375886524822695,
|
| 378 |
+
"grad_norm": 0.24669921398162842,
|
| 379 |
+
"learning_rate": 9.986165699464706e-06,
|
| 380 |
+
"loss": 1.051,
|
| 381 |
+
"step": 53
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.3829787234042553,
|
| 385 |
+
"grad_norm": 0.23184196650981903,
|
| 386 |
+
"learning_rate": 9.98292246503335e-06,
|
| 387 |
+
"loss": 1.0266,
|
| 388 |
+
"step": 54
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.3900709219858156,
|
| 392 |
+
"grad_norm": 0.23330503702163696,
|
| 393 |
+
"learning_rate": 9.97933865447057e-06,
|
| 394 |
+
"loss": 1.0789,
|
| 395 |
+
"step": 55
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.3971631205673759,
|
| 399 |
+
"grad_norm": 0.2424897402524948,
|
| 400 |
+
"learning_rate": 9.975414512725058e-06,
|
| 401 |
+
"loss": 1.0656,
|
| 402 |
+
"step": 56
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 0.40425531914893614,
|
| 406 |
+
"grad_norm": 0.21921077370643616,
|
| 407 |
+
"learning_rate": 9.971150308006689e-06,
|
| 408 |
+
"loss": 1.0726,
|
| 409 |
+
"step": 57
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"epoch": 0.41134751773049644,
|
| 413 |
+
"grad_norm": 0.20950859785079956,
|
| 414 |
+
"learning_rate": 9.966546331768192e-06,
|
| 415 |
+
"loss": 1.0632,
|
| 416 |
+
"step": 58
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.41843971631205673,
|
| 420 |
+
"grad_norm": 0.21916094422340393,
|
| 421 |
+
"learning_rate": 9.961602898685225e-06,
|
| 422 |
+
"loss": 1.0685,
|
| 423 |
+
"step": 59
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.425531914893617,
|
| 427 |
+
"grad_norm": 0.20929180085659027,
|
| 428 |
+
"learning_rate": 9.956320346634877e-06,
|
| 429 |
+
"loss": 1.0368,
|
| 430 |
+
"step": 60
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"epoch": 0.4326241134751773,
|
| 434 |
+
"grad_norm": 0.19803281128406525,
|
| 435 |
+
"learning_rate": 9.95069903667256e-06,
|
| 436 |
+
"loss": 1.0454,
|
| 437 |
+
"step": 61
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 0.4397163120567376,
|
| 441 |
+
"grad_norm": 0.20181335508823395,
|
| 442 |
+
"learning_rate": 9.944739353007344e-06,
|
| 443 |
+
"loss": 1.0365,
|
| 444 |
+
"step": 62
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"epoch": 0.44680851063829785,
|
| 448 |
+
"grad_norm": 0.2039608657360077,
|
| 449 |
+
"learning_rate": 9.938441702975689e-06,
|
| 450 |
+
"loss": 1.0164,
|
| 451 |
+
"step": 63
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 0.45390070921985815,
|
| 455 |
+
"grad_norm": 0.20605549216270447,
|
| 456 |
+
"learning_rate": 9.931806517013612e-06,
|
| 457 |
+
"loss": 1.0635,
|
| 458 |
+
"step": 64
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.46099290780141844,
|
| 462 |
+
"grad_norm": 0.1921020895242691,
|
| 463 |
+
"learning_rate": 9.92483424862726e-06,
|
| 464 |
+
"loss": 1.032,
|
| 465 |
+
"step": 65
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.46808510638297873,
|
| 469 |
+
"grad_norm": 0.19488710165023804,
|
| 470 |
+
"learning_rate": 9.917525374361913e-06,
|
| 471 |
+
"loss": 1.0477,
|
| 472 |
+
"step": 66
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 0.475177304964539,
|
| 476 |
+
"grad_norm": 0.20245994627475739,
|
| 477 |
+
"learning_rate": 9.90988039376942e-06,
|
| 478 |
+
"loss": 1.0539,
|
| 479 |
+
"step": 67
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.48226950354609927,
|
| 483 |
+
"grad_norm": 0.20090186595916748,
|
| 484 |
+
"learning_rate": 9.901899829374048e-06,
|
| 485 |
+
"loss": 1.0446,
|
| 486 |
+
"step": 68
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 0.48936170212765956,
|
| 490 |
+
"grad_norm": 0.20061436295509338,
|
| 491 |
+
"learning_rate": 9.893584226636773e-06,
|
| 492 |
+
"loss": 1.0474,
|
| 493 |
+
"step": 69
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"epoch": 0.49645390070921985,
|
| 497 |
+
"grad_norm": 0.1957883983850479,
|
| 498 |
+
"learning_rate": 9.884934153917998e-06,
|
| 499 |
+
"loss": 1.0212,
|
| 500 |
+
"step": 70
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.5035460992907801,
|
| 504 |
+
"grad_norm": 0.1866292655467987,
|
| 505 |
+
"learning_rate": 9.8759502024387e-06,
|
| 506 |
+
"loss": 1.0285,
|
| 507 |
+
"step": 71
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.5106382978723404,
|
| 511 |
+
"grad_norm": 0.20395490527153015,
|
| 512 |
+
"learning_rate": 9.86663298624003e-06,
|
| 513 |
+
"loss": 1.05,
|
| 514 |
+
"step": 72
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.5177304964539007,
|
| 518 |
+
"grad_norm": 0.19490036368370056,
|
| 519 |
+
"learning_rate": 9.856983142141338e-06,
|
| 520 |
+
"loss": 1.0437,
|
| 521 |
+
"step": 73
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"epoch": 0.524822695035461,
|
| 525 |
+
"grad_norm": 0.18446774780750275,
|
| 526 |
+
"learning_rate": 9.847001329696653e-06,
|
| 527 |
+
"loss": 1.0449,
|
| 528 |
+
"step": 74
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"epoch": 0.5319148936170213,
|
| 532 |
+
"grad_norm": 0.20253527164459229,
|
| 533 |
+
"learning_rate": 9.836688231149593e-06,
|
| 534 |
+
"loss": 1.0089,
|
| 535 |
+
"step": 75
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"epoch": 0.5390070921985816,
|
| 539 |
+
"grad_norm": 0.21082448959350586,
|
| 540 |
+
"learning_rate": 9.826044551386743e-06,
|
| 541 |
+
"loss": 1.0228,
|
| 542 |
+
"step": 76
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.5460992907801419,
|
| 546 |
+
"grad_norm": 0.19042915105819702,
|
| 547 |
+
"learning_rate": 9.81507101788948e-06,
|
| 548 |
+
"loss": 1.0281,
|
| 549 |
+
"step": 77
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.5531914893617021,
|
| 553 |
+
"grad_norm": 0.20652195811271667,
|
| 554 |
+
"learning_rate": 9.803768380684242e-06,
|
| 555 |
+
"loss": 1.0584,
|
| 556 |
+
"step": 78
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"epoch": 0.5602836879432624,
|
| 560 |
+
"grad_norm": 0.19188715517520905,
|
| 561 |
+
"learning_rate": 9.792137412291265e-06,
|
| 562 |
+
"loss": 1.0329,
|
| 563 |
+
"step": 79
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"epoch": 0.5673758865248227,
|
| 567 |
+
"grad_norm": 0.19346344470977783,
|
| 568 |
+
"learning_rate": 9.780178907671788e-06,
|
| 569 |
+
"loss": 1.019,
|
| 570 |
+
"step": 80
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.574468085106383,
|
| 574 |
+
"grad_norm": 0.19410409033298492,
|
| 575 |
+
"learning_rate": 9.767893684173722e-06,
|
| 576 |
+
"loss": 1.0201,
|
| 577 |
+
"step": 81
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 0.5815602836879432,
|
| 581 |
+
"grad_norm": 0.19631166756153107,
|
| 582 |
+
"learning_rate": 9.755282581475769e-06,
|
| 583 |
+
"loss": 1.0162,
|
| 584 |
+
"step": 82
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 0.5886524822695035,
|
| 588 |
+
"grad_norm": 0.18170547485351562,
|
| 589 |
+
"learning_rate": 9.742346461530048e-06,
|
| 590 |
+
"loss": 1.0272,
|
| 591 |
+
"step": 83
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 0.5957446808510638,
|
| 595 |
+
"grad_norm": 0.19224867224693298,
|
| 596 |
+
"learning_rate": 9.729086208503174e-06,
|
| 597 |
+
"loss": 1.002,
|
| 598 |
+
"step": 84
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"epoch": 0.6028368794326241,
|
| 602 |
+
"grad_norm": 0.1961982250213623,
|
| 603 |
+
"learning_rate": 9.715502728715827e-06,
|
| 604 |
+
"loss": 1.0024,
|
| 605 |
+
"step": 85
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"epoch": 0.6099290780141844,
|
| 609 |
+
"grad_norm": 0.19919396936893463,
|
| 610 |
+
"learning_rate": 9.701596950580807e-06,
|
| 611 |
+
"loss": 1.0277,
|
| 612 |
+
"step": 86
|
| 613 |
+
},
|
| 614 |
+
{
|
| 615 |
+
"epoch": 0.6170212765957447,
|
| 616 |
+
"grad_norm": 0.19481903314590454,
|
| 617 |
+
"learning_rate": 9.687369824539577e-06,
|
| 618 |
+
"loss": 1.0318,
|
| 619 |
+
"step": 87
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"epoch": 0.624113475177305,
|
| 623 |
+
"grad_norm": 0.20056012272834778,
|
| 624 |
+
"learning_rate": 9.672822322997305e-06,
|
| 625 |
+
"loss": 1.0457,
|
| 626 |
+
"step": 88
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 0.6312056737588653,
|
| 630 |
+
"grad_norm": 0.186695396900177,
|
| 631 |
+
"learning_rate": 9.657955440256396e-06,
|
| 632 |
+
"loss": 1.0384,
|
| 633 |
+
"step": 89
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 0.6382978723404256,
|
| 637 |
+
"grad_norm": 0.1910395473241806,
|
| 638 |
+
"learning_rate": 9.642770192448537e-06,
|
| 639 |
+
"loss": 1.02,
|
| 640 |
+
"step": 90
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 0.6453900709219859,
|
| 644 |
+
"grad_norm": 0.19218654930591583,
|
| 645 |
+
"learning_rate": 9.627267617465243e-06,
|
| 646 |
+
"loss": 1.0262,
|
| 647 |
+
"step": 91
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"epoch": 0.6524822695035462,
|
| 651 |
+
"grad_norm": 0.20698124170303345,
|
| 652 |
+
"learning_rate": 9.611448774886925e-06,
|
| 653 |
+
"loss": 1.0214,
|
| 654 |
+
"step": 92
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"epoch": 0.6595744680851063,
|
| 658 |
+
"grad_norm": 0.1869155317544937,
|
| 659 |
+
"learning_rate": 9.595314745910455e-06,
|
| 660 |
+
"loss": 1.0176,
|
| 661 |
+
"step": 93
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 0.6666666666666666,
|
| 665 |
+
"grad_norm": 0.19854748249053955,
|
| 666 |
+
"learning_rate": 9.578866633275289e-06,
|
| 667 |
+
"loss": 1.0213,
|
| 668 |
+
"step": 94
|
| 669 |
+
},
|
| 670 |
+
{
|
| 671 |
+
"epoch": 0.6737588652482269,
|
| 672 |
+
"grad_norm": 0.20198820531368256,
|
| 673 |
+
"learning_rate": 9.562105561188069e-06,
|
| 674 |
+
"loss": 1.0088,
|
| 675 |
+
"step": 95
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 0.6808510638297872,
|
| 679 |
+
"grad_norm": 0.19861312210559845,
|
| 680 |
+
"learning_rate": 9.545032675245814e-06,
|
| 681 |
+
"loss": 1.0026,
|
| 682 |
+
"step": 96
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 0.6879432624113475,
|
| 686 |
+
"grad_norm": 0.2025546431541443,
|
| 687 |
+
"learning_rate": 9.527649142357596e-06,
|
| 688 |
+
"loss": 0.9929,
|
| 689 |
+
"step": 97
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"epoch": 0.6950354609929078,
|
| 693 |
+
"grad_norm": 0.20362333953380585,
|
| 694 |
+
"learning_rate": 9.509956150664796e-06,
|
| 695 |
+
"loss": 1.022,
|
| 696 |
+
"step": 98
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"epoch": 0.7021276595744681,
|
| 700 |
+
"grad_norm": 0.19811417162418365,
|
| 701 |
+
"learning_rate": 9.491954909459895e-06,
|
| 702 |
+
"loss": 0.9932,
|
| 703 |
+
"step": 99
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 0.7092198581560284,
|
| 707 |
+
"grad_norm": 0.19115161895751953,
|
| 708 |
+
"learning_rate": 9.473646649103819e-06,
|
| 709 |
+
"loss": 1.0015,
|
| 710 |
+
"step": 100
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 0.7163120567375887,
|
| 714 |
+
"grad_norm": 0.1923169642686844,
|
| 715 |
+
"learning_rate": 9.45503262094184e-06,
|
| 716 |
+
"loss": 1.0037,
|
| 717 |
+
"step": 101
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 0.723404255319149,
|
| 721 |
+
"grad_norm": 0.1964125782251358,
|
| 722 |
+
"learning_rate": 9.43611409721806e-06,
|
| 723 |
+
"loss": 1.001,
|
| 724 |
+
"step": 102
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"epoch": 0.7304964539007093,
|
| 728 |
+
"grad_norm": 0.19892272353172302,
|
| 729 |
+
"learning_rate": 9.416892370988445e-06,
|
| 730 |
+
"loss": 1.0361,
|
| 731 |
+
"step": 103
|
| 732 |
+
},
|
| 733 |
+
{
|
| 734 |
+
"epoch": 0.7375886524822695,
|
| 735 |
+
"grad_norm": 0.19403427839279175,
|
| 736 |
+
"learning_rate": 9.397368756032445e-06,
|
| 737 |
+
"loss": 0.9928,
|
| 738 |
+
"step": 104
|
| 739 |
+
},
|
| 740 |
+
{
|
| 741 |
+
"epoch": 0.7446808510638298,
|
| 742 |
+
"grad_norm": 0.19587570428848267,
|
| 743 |
+
"learning_rate": 9.377544586763216e-06,
|
| 744 |
+
"loss": 1.0158,
|
| 745 |
+
"step": 105
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"epoch": 0.75177304964539,
|
| 749 |
+
"grad_norm": 0.18641604483127594,
|
| 750 |
+
"learning_rate": 9.357421218136387e-06,
|
| 751 |
+
"loss": 0.9796,
|
| 752 |
+
"step": 106
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"epoch": 0.7588652482269503,
|
| 756 |
+
"grad_norm": 0.1914488524198532,
|
| 757 |
+
"learning_rate": 9.337000025557477e-06,
|
| 758 |
+
"loss": 1.0075,
|
| 759 |
+
"step": 107
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"epoch": 0.7659574468085106,
|
| 763 |
+
"grad_norm": 0.18581831455230713,
|
| 764 |
+
"learning_rate": 9.31628240478787e-06,
|
| 765 |
+
"loss": 1.0121,
|
| 766 |
+
"step": 108
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"epoch": 0.7730496453900709,
|
| 770 |
+
"grad_norm": 0.19224292039871216,
|
| 771 |
+
"learning_rate": 9.295269771849426e-06,
|
| 772 |
+
"loss": 1.0479,
|
| 773 |
+
"step": 109
|
| 774 |
+
},
|
| 775 |
+
{
|
| 776 |
+
"epoch": 0.7801418439716312,
|
| 777 |
+
"grad_norm": 0.18176913261413574,
|
| 778 |
+
"learning_rate": 9.273963562927695e-06,
|
| 779 |
+
"loss": 1.0063,
|
| 780 |
+
"step": 110
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"epoch": 0.7872340425531915,
|
| 784 |
+
"grad_norm": 0.20030972361564636,
|
| 785 |
+
"learning_rate": 9.252365234273754e-06,
|
| 786 |
+
"loss": 1.0349,
|
| 787 |
+
"step": 111
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"epoch": 0.7943262411347518,
|
| 791 |
+
"grad_norm": 0.18550996482372284,
|
| 792 |
+
"learning_rate": 9.230476262104678e-06,
|
| 793 |
+
"loss": 1.0236,
|
| 794 |
+
"step": 112
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"epoch": 0.8014184397163121,
|
| 798 |
+
"grad_norm": 0.20744724571704865,
|
| 799 |
+
"learning_rate": 9.208298142502637e-06,
|
| 800 |
+
"loss": 0.9884,
|
| 801 |
+
"step": 113
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"epoch": 0.8085106382978723,
|
| 805 |
+
"grad_norm": 0.1943831443786621,
|
| 806 |
+
"learning_rate": 9.185832391312644e-06,
|
| 807 |
+
"loss": 1.0071,
|
| 808 |
+
"step": 114
|
| 809 |
+
},
|
| 810 |
+
{
|
| 811 |
+
"epoch": 0.8156028368794326,
|
| 812 |
+
"grad_norm": 0.20337262749671936,
|
| 813 |
+
"learning_rate": 9.163080544038953e-06,
|
| 814 |
+
"loss": 1.0196,
|
| 815 |
+
"step": 115
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"epoch": 0.8226950354609929,
|
| 819 |
+
"grad_norm": 0.20451538264751434,
|
| 820 |
+
"learning_rate": 9.140044155740102e-06,
|
| 821 |
+
"loss": 0.9787,
|
| 822 |
+
"step": 116
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"epoch": 0.8297872340425532,
|
| 826 |
+
"grad_norm": 0.2050030678510666,
|
| 827 |
+
"learning_rate": 9.11672480092263e-06,
|
| 828 |
+
"loss": 0.99,
|
| 829 |
+
"step": 117
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"epoch": 0.8368794326241135,
|
| 833 |
+
"grad_norm": 0.18984027206897736,
|
| 834 |
+
"learning_rate": 9.093124073433464e-06,
|
| 835 |
+
"loss": 1.0012,
|
| 836 |
+
"step": 118
|
| 837 |
+
},
|
| 838 |
+
{
|
| 839 |
+
"epoch": 0.8439716312056738,
|
| 840 |
+
"grad_norm": 0.19882577657699585,
|
| 841 |
+
"learning_rate": 9.069243586350976e-06,
|
| 842 |
+
"loss": 1.0213,
|
| 843 |
+
"step": 119
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 0.851063829787234,
|
| 847 |
+
"grad_norm": 0.18450938165187836,
|
| 848 |
+
"learning_rate": 9.045084971874738e-06,
|
| 849 |
+
"loss": 1.025,
|
| 850 |
+
"step": 120
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 0.8581560283687943,
|
| 854 |
+
"grad_norm": 0.20340915024280548,
|
| 855 |
+
"learning_rate": 9.02064988121396e-06,
|
| 856 |
+
"loss": 0.9901,
|
| 857 |
+
"step": 121
|
| 858 |
+
},
|
| 859 |
+
{
|
| 860 |
+
"epoch": 0.8652482269503546,
|
| 861 |
+
"grad_norm": 0.20006223022937775,
|
| 862 |
+
"learning_rate": 8.995939984474624e-06,
|
| 863 |
+
"loss": 0.9847,
|
| 864 |
+
"step": 122
|
| 865 |
+
},
|
| 866 |
+
{
|
| 867 |
+
"epoch": 0.8723404255319149,
|
| 868 |
+
"grad_norm": 0.19546881318092346,
|
| 869 |
+
"learning_rate": 8.970956970545356e-06,
|
| 870 |
+
"loss": 1.0009,
|
| 871 |
+
"step": 123
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
"epoch": 0.8794326241134752,
|
| 875 |
+
"grad_norm": 0.19550330936908722,
|
| 876 |
+
"learning_rate": 8.94570254698197e-06,
|
| 877 |
+
"loss": 1.0014,
|
| 878 |
+
"step": 124
|
| 879 |
+
},
|
| 880 |
+
{
|
| 881 |
+
"epoch": 0.8865248226950354,
|
| 882 |
+
"grad_norm": 0.20895220339298248,
|
| 883 |
+
"learning_rate": 8.920178439890765e-06,
|
| 884 |
+
"loss": 0.9941,
|
| 885 |
+
"step": 125
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"epoch": 0.8936170212765957,
|
| 889 |
+
"grad_norm": 0.19648240506649017,
|
| 890 |
+
"learning_rate": 8.894386393810563e-06,
|
| 891 |
+
"loss": 0.9768,
|
| 892 |
+
"step": 126
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"epoch": 0.900709219858156,
|
| 896 |
+
"grad_norm": 0.20133382081985474,
|
| 897 |
+
"learning_rate": 8.868328171593448e-06,
|
| 898 |
+
"loss": 0.9833,
|
| 899 |
+
"step": 127
|
| 900 |
+
},
|
| 901 |
+
{
|
| 902 |
+
"epoch": 0.9078014184397163,
|
| 903 |
+
"grad_norm": 0.21077631413936615,
|
| 904 |
+
"learning_rate": 8.842005554284296e-06,
|
| 905 |
+
"loss": 1.0164,
|
| 906 |
+
"step": 128
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"epoch": 0.9148936170212766,
|
| 910 |
+
"grad_norm": 0.22325192391872406,
|
| 911 |
+
"learning_rate": 8.815420340999034e-06,
|
| 912 |
+
"loss": 1.0162,
|
| 913 |
+
"step": 129
|
| 914 |
+
},
|
| 915 |
+
{
|
| 916 |
+
"epoch": 0.9219858156028369,
|
| 917 |
+
"grad_norm": 0.203014075756073,
|
| 918 |
+
"learning_rate": 8.788574348801676e-06,
|
| 919 |
+
"loss": 1.015,
|
| 920 |
+
"step": 130
|
| 921 |
+
},
|
| 922 |
+
{
|
| 923 |
+
"epoch": 0.9290780141843972,
|
| 924 |
+
"grad_norm": 0.21376149356365204,
|
| 925 |
+
"learning_rate": 8.761469412580126e-06,
|
| 926 |
+
"loss": 1.0152,
|
| 927 |
+
"step": 131
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"epoch": 0.9361702127659575,
|
| 931 |
+
"grad_norm": 0.21650567650794983,
|
| 932 |
+
"learning_rate": 8.734107384920771e-06,
|
| 933 |
+
"loss": 0.9946,
|
| 934 |
+
"step": 132
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"epoch": 0.9432624113475178,
|
| 938 |
+
"grad_norm": 0.20015230774879456,
|
| 939 |
+
"learning_rate": 8.706490135981856e-06,
|
| 940 |
+
"loss": 1.0039,
|
| 941 |
+
"step": 133
|
| 942 |
+
},
|
| 943 |
+
{
|
| 944 |
+
"epoch": 0.950354609929078,
|
| 945 |
+
"grad_norm": 0.1983427256345749,
|
| 946 |
+
"learning_rate": 8.67861955336566e-06,
|
| 947 |
+
"loss": 0.9855,
|
| 948 |
+
"step": 134
|
| 949 |
+
},
|
| 950 |
+
{
|
| 951 |
+
"epoch": 0.9574468085106383,
|
| 952 |
+
"grad_norm": 0.200357124209404,
|
| 953 |
+
"learning_rate": 8.650497541989483e-06,
|
| 954 |
+
"loss": 1.0297,
|
| 955 |
+
"step": 135
|
| 956 |
+
},
|
| 957 |
+
{
|
| 958 |
+
"epoch": 0.9645390070921985,
|
| 959 |
+
"grad_norm": 0.1992904543876648,
|
| 960 |
+
"learning_rate": 8.622126023955446e-06,
|
| 961 |
+
"loss": 0.9844,
|
| 962 |
+
"step": 136
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"epoch": 0.9716312056737588,
|
| 966 |
+
"grad_norm": 0.2062419056892395,
|
| 967 |
+
"learning_rate": 8.59350693841912e-06,
|
| 968 |
+
"loss": 0.9856,
|
| 969 |
+
"step": 137
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"epoch": 0.9787234042553191,
|
| 973 |
+
"grad_norm": 0.19228526949882507,
|
| 974 |
+
"learning_rate": 8.564642241456986e-06,
|
| 975 |
+
"loss": 1.0012,
|
| 976 |
+
"step": 138
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"epoch": 0.9858156028368794,
|
| 980 |
+
"grad_norm": 0.1982816457748413,
|
| 981 |
+
"learning_rate": 8.535533905932739e-06,
|
| 982 |
+
"loss": 1.0048,
|
| 983 |
+
"step": 139
|
| 984 |
+
},
|
| 985 |
+
{
|
| 986 |
+
"epoch": 0.9929078014184397,
|
| 987 |
+
"grad_norm": 0.21971984207630157,
|
| 988 |
+
"learning_rate": 8.506183921362443e-06,
|
| 989 |
+
"loss": 1.0008,
|
| 990 |
+
"step": 140
|
| 991 |
+
},
|
| 992 |
+
{
|
| 993 |
+
"epoch": 1.0,
|
| 994 |
+
"grad_norm": 0.21237662434577942,
|
| 995 |
+
"learning_rate": 8.476594293778561e-06,
|
| 996 |
+
"loss": 0.9844,
|
| 997 |
+
"step": 141
|
| 998 |
+
},
|
| 999 |
+
{
|
| 1000 |
+
"epoch": 1.0070921985815602,
|
| 1001 |
+
"grad_norm": 0.2145996391773224,
|
| 1002 |
+
"learning_rate": 8.446767045592829e-06,
|
| 1003 |
+
"loss": 0.9751,
|
| 1004 |
+
"step": 142
|
| 1005 |
+
},
|
| 1006 |
+
{
|
| 1007 |
+
"epoch": 1.0141843971631206,
|
| 1008 |
+
"grad_norm": 0.18791967630386353,
|
| 1009 |
+
"learning_rate": 8.416704215458042e-06,
|
| 1010 |
+
"loss": 0.9872,
|
| 1011 |
+
"step": 143
|
| 1012 |
+
},
|
| 1013 |
+
{
|
| 1014 |
+
"epoch": 1.0212765957446808,
|
| 1015 |
+
"grad_norm": 0.2027330994606018,
|
| 1016 |
+
"learning_rate": 8.386407858128707e-06,
|
| 1017 |
+
"loss": 0.9903,
|
| 1018 |
+
"step": 144
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 1.0283687943262412,
|
| 1022 |
+
"grad_norm": 0.20994175970554352,
|
| 1023 |
+
"learning_rate": 8.355880044320599e-06,
|
| 1024 |
+
"loss": 0.9883,
|
| 1025 |
+
"step": 145
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"epoch": 1.0354609929078014,
|
| 1029 |
+
"grad_norm": 0.20633184909820557,
|
| 1030 |
+
"learning_rate": 8.325122860569241e-06,
|
| 1031 |
+
"loss": 1.0155,
|
| 1032 |
+
"step": 146
|
| 1033 |
+
},
|
| 1034 |
+
{
|
| 1035 |
+
"epoch": 1.0425531914893618,
|
| 1036 |
+
"grad_norm": 0.2211437076330185,
|
| 1037 |
+
"learning_rate": 8.29413840908729e-06,
|
| 1038 |
+
"loss": 0.9611,
|
| 1039 |
+
"step": 147
|
| 1040 |
+
},
|
| 1041 |
+
{
|
| 1042 |
+
"epoch": 1.049645390070922,
|
| 1043 |
+
"grad_norm": 0.2136813998222351,
|
| 1044 |
+
"learning_rate": 8.262928807620843e-06,
|
| 1045 |
+
"loss": 1.0017,
|
| 1046 |
+
"step": 148
|
| 1047 |
+
},
|
| 1048 |
+
{
|
| 1049 |
+
"epoch": 1.0567375886524824,
|
| 1050 |
+
"grad_norm": 0.20764672756195068,
|
| 1051 |
+
"learning_rate": 8.231496189304704e-06,
|
| 1052 |
+
"loss": 0.9868,
|
| 1053 |
+
"step": 149
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
"epoch": 1.0638297872340425,
|
| 1057 |
+
"grad_norm": 0.21529912948608398,
|
| 1058 |
+
"learning_rate": 8.199842702516584e-06,
|
| 1059 |
+
"loss": 0.9791,
|
| 1060 |
+
"step": 150
|
| 1061 |
+
},
|
| 1062 |
+
{
|
| 1063 |
+
"epoch": 1.070921985815603,
|
| 1064 |
+
"grad_norm": 0.21646371483802795,
|
| 1065 |
+
"learning_rate": 8.167970510730254e-06,
|
| 1066 |
+
"loss": 0.9682,
|
| 1067 |
+
"step": 151
|
| 1068 |
+
},
|
| 1069 |
+
{
|
| 1070 |
+
"epoch": 1.0780141843971631,
|
| 1071 |
+
"grad_norm": 0.23525112867355347,
|
| 1072 |
+
"learning_rate": 8.135881792367686e-06,
|
| 1073 |
+
"loss": 0.9728,
|
| 1074 |
+
"step": 152
|
| 1075 |
+
},
|
| 1076 |
+
{
|
| 1077 |
+
"epoch": 1.0851063829787233,
|
| 1078 |
+
"grad_norm": 0.20280921459197998,
|
| 1079 |
+
"learning_rate": 8.103578740650157e-06,
|
| 1080 |
+
"loss": 0.9444,
|
| 1081 |
+
"step": 153
|
| 1082 |
+
},
|
| 1083 |
+
{
|
| 1084 |
+
"epoch": 1.0921985815602837,
|
| 1085 |
+
"grad_norm": 0.22146719694137573,
|
| 1086 |
+
"learning_rate": 8.071063563448341e-06,
|
| 1087 |
+
"loss": 0.9704,
|
| 1088 |
+
"step": 154
|
| 1089 |
+
},
|
| 1090 |
+
{
|
| 1091 |
+
"epoch": 1.099290780141844,
|
| 1092 |
+
"grad_norm": 0.21181389689445496,
|
| 1093 |
+
"learning_rate": 8.038338483131408e-06,
|
| 1094 |
+
"loss": 1.0009,
|
| 1095 |
+
"step": 155
|
| 1096 |
+
},
|
| 1097 |
+
{
|
| 1098 |
+
"epoch": 1.1063829787234043,
|
| 1099 |
+
"grad_norm": 0.19996969401836395,
|
| 1100 |
+
"learning_rate": 8.005405736415127e-06,
|
| 1101 |
+
"loss": 0.9672,
|
| 1102 |
+
"step": 156
|
| 1103 |
+
},
|
| 1104 |
+
{
|
| 1105 |
+
"epoch": 1.1134751773049645,
|
| 1106 |
+
"grad_norm": 0.21428182721138,
|
| 1107 |
+
"learning_rate": 7.972267574208991e-06,
|
| 1108 |
+
"loss": 0.9817,
|
| 1109 |
+
"step": 157
|
| 1110 |
+
},
|
| 1111 |
+
{
|
| 1112 |
+
"epoch": 1.1205673758865249,
|
| 1113 |
+
"grad_norm": 0.20944583415985107,
|
| 1114 |
+
"learning_rate": 7.938926261462366e-06,
|
| 1115 |
+
"loss": 0.9553,
|
| 1116 |
+
"step": 158
|
| 1117 |
+
},
|
| 1118 |
+
{
|
| 1119 |
+
"epoch": 1.127659574468085,
|
| 1120 |
+
"grad_norm": 0.21751722693443298,
|
| 1121 |
+
"learning_rate": 7.905384077009693e-06,
|
| 1122 |
+
"loss": 0.9705,
|
| 1123 |
+
"step": 159
|
| 1124 |
+
},
|
| 1125 |
+
{
|
| 1126 |
+
"epoch": 1.1347517730496455,
|
| 1127 |
+
"grad_norm": 0.19217561185359955,
|
| 1128 |
+
"learning_rate": 7.871643313414718e-06,
|
| 1129 |
+
"loss": 0.9743,
|
| 1130 |
+
"step": 160
|
| 1131 |
+
},
|
| 1132 |
+
{
|
| 1133 |
+
"epoch": 1.1418439716312057,
|
| 1134 |
+
"grad_norm": 0.21539221704006195,
|
| 1135 |
+
"learning_rate": 7.837706276813819e-06,
|
| 1136 |
+
"loss": 0.9742,
|
| 1137 |
+
"step": 161
|
| 1138 |
+
},
|
| 1139 |
+
{
|
| 1140 |
+
"epoch": 1.148936170212766,
|
| 1141 |
+
"grad_norm": 0.20422764122486115,
|
| 1142 |
+
"learning_rate": 7.803575286758365e-06,
|
| 1143 |
+
"loss": 0.9657,
|
| 1144 |
+
"step": 162
|
| 1145 |
+
},
|
| 1146 |
+
{
|
| 1147 |
+
"epoch": 1.1560283687943262,
|
| 1148 |
+
"grad_norm": 0.22533419728279114,
|
| 1149 |
+
"learning_rate": 7.769252676056186e-06,
|
| 1150 |
+
"loss": 0.9888,
|
| 1151 |
+
"step": 163
|
| 1152 |
+
},
|
| 1153 |
+
{
|
| 1154 |
+
"epoch": 1.1631205673758864,
|
| 1155 |
+
"grad_norm": 0.2112210988998413,
|
| 1156 |
+
"learning_rate": 7.734740790612137e-06,
|
| 1157 |
+
"loss": 0.9702,
|
| 1158 |
+
"step": 164
|
| 1159 |
+
},
|
| 1160 |
+
{
|
| 1161 |
+
"epoch": 1.1702127659574468,
|
| 1162 |
+
"grad_norm": 0.2327321320772171,
|
| 1163 |
+
"learning_rate": 7.700041989267738e-06,
|
| 1164 |
+
"loss": 0.9968,
|
| 1165 |
+
"step": 165
|
| 1166 |
+
},
|
| 1167 |
+
{
|
| 1168 |
+
"epoch": 1.177304964539007,
|
| 1169 |
+
"grad_norm": 0.20969471335411072,
|
| 1170 |
+
"learning_rate": 7.66515864363997e-06,
|
| 1171 |
+
"loss": 0.9834,
|
| 1172 |
+
"step": 166
|
| 1173 |
+
},
|
| 1174 |
+
{
|
| 1175 |
+
"epoch": 1.1843971631205674,
|
| 1176 |
+
"grad_norm": 0.2076883465051651,
|
| 1177 |
+
"learning_rate": 7.63009313795917e-06,
|
| 1178 |
+
"loss": 1.0022,
|
| 1179 |
+
"step": 167
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"epoch": 1.1914893617021276,
|
| 1183 |
+
"grad_norm": 0.2031002789735794,
|
| 1184 |
+
"learning_rate": 7.594847868906076e-06,
|
| 1185 |
+
"loss": 0.9576,
|
| 1186 |
+
"step": 168
|
| 1187 |
+
},
|
| 1188 |
+
{
|
| 1189 |
+
"epoch": 1.198581560283688,
|
| 1190 |
+
"grad_norm": 0.20676583051681519,
|
| 1191 |
+
"learning_rate": 7.559425245448006e-06,
|
| 1192 |
+
"loss": 0.9522,
|
| 1193 |
+
"step": 169
|
| 1194 |
+
},
|
| 1195 |
+
{
|
| 1196 |
+
"epoch": 1.2056737588652482,
|
| 1197 |
+
"grad_norm": 0.19986094534397125,
|
| 1198 |
+
"learning_rate": 7.52382768867422e-06,
|
| 1199 |
+
"loss": 1.0005,
|
| 1200 |
+
"step": 170
|
| 1201 |
+
},
|
| 1202 |
+
{
|
| 1203 |
+
"epoch": 1.2127659574468086,
|
| 1204 |
+
"grad_norm": 0.20511922240257263,
|
| 1205 |
+
"learning_rate": 7.488057631630438e-06,
|
| 1206 |
+
"loss": 0.9907,
|
| 1207 |
+
"step": 171
|
| 1208 |
+
},
|
| 1209 |
+
{
|
| 1210 |
+
"epoch": 1.2198581560283688,
|
| 1211 |
+
"grad_norm": 0.2091362178325653,
|
| 1212 |
+
"learning_rate": 7.452117519152542e-06,
|
| 1213 |
+
"loss": 0.9696,
|
| 1214 |
+
"step": 172
|
| 1215 |
+
},
|
| 1216 |
+
{
|
| 1217 |
+
"epoch": 1.226950354609929,
|
| 1218 |
+
"grad_norm": 0.20658285915851593,
|
| 1219 |
+
"learning_rate": 7.416009807699481e-06,
|
| 1220 |
+
"loss": 0.9724,
|
| 1221 |
+
"step": 173
|
| 1222 |
+
},
|
| 1223 |
+
{
|
| 1224 |
+
"epoch": 1.2340425531914894,
|
| 1225 |
+
"grad_norm": 0.20578406751155853,
|
| 1226 |
+
"learning_rate": 7.379736965185369e-06,
|
| 1227 |
+
"loss": 0.9651,
|
| 1228 |
+
"step": 174
|
| 1229 |
+
},
|
| 1230 |
+
{
|
| 1231 |
+
"epoch": 1.2411347517730495,
|
| 1232 |
+
"grad_norm": 0.19912122189998627,
|
| 1233 |
+
"learning_rate": 7.343301470810809e-06,
|
| 1234 |
+
"loss": 0.9669,
|
| 1235 |
+
"step": 175
|
| 1236 |
+
},
|
| 1237 |
+
{
|
| 1238 |
+
"epoch": 1.24822695035461,
|
| 1239 |
+
"grad_norm": 0.20967933535575867,
|
| 1240 |
+
"learning_rate": 7.30670581489344e-06,
|
| 1241 |
+
"loss": 0.958,
|
| 1242 |
+
"step": 176
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"epoch": 1.2553191489361701,
|
| 1246 |
+
"grad_norm": 0.20045220851898193,
|
| 1247 |
+
"learning_rate": 7.269952498697734e-06,
|
| 1248 |
+
"loss": 0.9891,
|
| 1249 |
+
"step": 177
|
| 1250 |
+
},
|
| 1251 |
+
{
|
| 1252 |
+
"epoch": 1.2624113475177305,
|
| 1253 |
+
"grad_norm": 0.20343008637428284,
|
| 1254 |
+
"learning_rate": 7.233044034264034e-06,
|
| 1255 |
+
"loss": 0.9555,
|
| 1256 |
+
"step": 178
|
| 1257 |
+
},
|
| 1258 |
+
{
|
| 1259 |
+
"epoch": 1.2695035460992907,
|
| 1260 |
+
"grad_norm": 0.2061295509338379,
|
| 1261 |
+
"learning_rate": 7.195982944236853e-06,
|
| 1262 |
+
"loss": 0.9778,
|
| 1263 |
+
"step": 179
|
| 1264 |
+
},
|
| 1265 |
+
{
|
| 1266 |
+
"epoch": 1.2765957446808511,
|
| 1267 |
+
"grad_norm": 0.2172738015651703,
|
| 1268 |
+
"learning_rate": 7.158771761692464e-06,
|
| 1269 |
+
"loss": 0.9904,
|
| 1270 |
+
"step": 180
|
| 1271 |
+
},
|
| 1272 |
+
{
|
| 1273 |
+
"epoch": 1.2836879432624113,
|
| 1274 |
+
"grad_norm": 0.2063237875699997,
|
| 1275 |
+
"learning_rate": 7.121413029965769e-06,
|
| 1276 |
+
"loss": 0.962,
|
| 1277 |
+
"step": 181
|
| 1278 |
+
},
|
| 1279 |
+
{
|
| 1280 |
+
"epoch": 1.2907801418439715,
|
| 1281 |
+
"grad_norm": 0.21524560451507568,
|
| 1282 |
+
"learning_rate": 7.083909302476453e-06,
|
| 1283 |
+
"loss": 0.9384,
|
| 1284 |
+
"step": 182
|
| 1285 |
+
},
|
| 1286 |
+
{
|
| 1287 |
+
"epoch": 1.297872340425532,
|
| 1288 |
+
"grad_norm": 0.2063521295785904,
|
| 1289 |
+
"learning_rate": 7.04626314255447e-06,
|
| 1290 |
+
"loss": 0.9938,
|
| 1291 |
+
"step": 183
|
| 1292 |
+
},
|
| 1293 |
+
{
|
| 1294 |
+
"epoch": 1.3049645390070923,
|
| 1295 |
+
"grad_norm": 0.21301975846290588,
|
| 1296 |
+
"learning_rate": 7.008477123264849e-06,
|
| 1297 |
+
"loss": 0.9648,
|
| 1298 |
+
"step": 184
|
| 1299 |
+
},
|
| 1300 |
+
{
|
| 1301 |
+
"epoch": 1.3120567375886525,
|
| 1302 |
+
"grad_norm": 0.22273679077625275,
|
| 1303 |
+
"learning_rate": 6.970553827231809e-06,
|
| 1304 |
+
"loss": 0.9901,
|
| 1305 |
+
"step": 185
|
| 1306 |
+
},
|
| 1307 |
+
{
|
| 1308 |
+
"epoch": 1.3191489361702127,
|
| 1309 |
+
"grad_norm": 0.21703994274139404,
|
| 1310 |
+
"learning_rate": 6.932495846462262e-06,
|
| 1311 |
+
"loss": 0.9551,
|
| 1312 |
+
"step": 186
|
| 1313 |
+
},
|
| 1314 |
+
{
|
| 1315 |
+
"epoch": 1.326241134751773,
|
| 1316 |
+
"grad_norm": 0.20577090978622437,
|
| 1317 |
+
"learning_rate": 6.8943057821686386e-06,
|
| 1318 |
+
"loss": 0.9766,
|
| 1319 |
+
"step": 187
|
| 1320 |
+
},
|
| 1321 |
+
{
|
| 1322 |
+
"epoch": 1.3333333333333333,
|
| 1323 |
+
"grad_norm": 0.2066967487335205,
|
| 1324 |
+
"learning_rate": 6.855986244591104e-06,
|
| 1325 |
+
"loss": 0.957,
|
| 1326 |
+
"step": 188
|
| 1327 |
+
},
|
| 1328 |
+
{
|
| 1329 |
+
"epoch": 1.3404255319148937,
|
| 1330 |
+
"grad_norm": 0.21506328880786896,
|
| 1331 |
+
"learning_rate": 6.817539852819149e-06,
|
| 1332 |
+
"loss": 0.9726,
|
| 1333 |
+
"step": 189
|
| 1334 |
+
},
|
| 1335 |
+
{
|
| 1336 |
+
"epoch": 1.3475177304964538,
|
| 1337 |
+
"grad_norm": 0.20125408470630646,
|
| 1338 |
+
"learning_rate": 6.778969234612583e-06,
|
| 1339 |
+
"loss": 0.9432,
|
| 1340 |
+
"step": 190
|
| 1341 |
+
},
|
| 1342 |
+
{
|
| 1343 |
+
"epoch": 1.3546099290780143,
|
| 1344 |
+
"grad_norm": 0.22270430624485016,
|
| 1345 |
+
"learning_rate": 6.7402770262219234e-06,
|
| 1346 |
+
"loss": 0.9774,
|
| 1347 |
+
"step": 191
|
| 1348 |
+
},
|
| 1349 |
+
{
|
| 1350 |
+
"epoch": 1.3617021276595744,
|
| 1351 |
+
"grad_norm": 0.21136341989040375,
|
| 1352 |
+
"learning_rate": 6.701465872208216e-06,
|
| 1353 |
+
"loss": 0.9853,
|
| 1354 |
+
"step": 192
|
| 1355 |
+
},
|
| 1356 |
+
{
|
| 1357 |
+
"epoch": 1.3687943262411348,
|
| 1358 |
+
"grad_norm": 0.1968621164560318,
|
| 1359 |
+
"learning_rate": 6.662538425262285e-06,
|
| 1360 |
+
"loss": 0.9679,
|
| 1361 |
+
"step": 193
|
| 1362 |
+
},
|
| 1363 |
+
{
|
| 1364 |
+
"epoch": 1.375886524822695,
|
| 1365 |
+
"grad_norm": 0.20722901821136475,
|
| 1366 |
+
"learning_rate": 6.6234973460234184e-06,
|
| 1367 |
+
"loss": 0.9525,
|
| 1368 |
+
"step": 194
|
| 1369 |
+
},
|
| 1370 |
+
{
|
| 1371 |
+
"epoch": 1.3829787234042552,
|
| 1372 |
+
"grad_norm": 0.2028326392173767,
|
| 1373 |
+
"learning_rate": 6.584345302897522e-06,
|
| 1374 |
+
"loss": 0.9623,
|
| 1375 |
+
"step": 195
|
| 1376 |
+
},
|
| 1377 |
+
{
|
| 1378 |
+
"epoch": 1.3900709219858156,
|
| 1379 |
+
"grad_norm": 0.20606288313865662,
|
| 1380 |
+
"learning_rate": 6.545084971874738e-06,
|
| 1381 |
+
"loss": 0.9732,
|
| 1382 |
+
"step": 196
|
| 1383 |
+
},
|
| 1384 |
+
{
|
| 1385 |
+
"epoch": 1.397163120567376,
|
| 1386 |
+
"grad_norm": 0.206637442111969,
|
| 1387 |
+
"learning_rate": 6.505719036346538e-06,
|
| 1388 |
+
"loss": 0.9663,
|
| 1389 |
+
"step": 197
|
| 1390 |
+
},
|
| 1391 |
+
{
|
| 1392 |
+
"epoch": 1.4042553191489362,
|
| 1393 |
+
"grad_norm": 0.20356805622577667,
|
| 1394 |
+
"learning_rate": 6.466250186922325e-06,
|
| 1395 |
+
"loss": 0.9606,
|
| 1396 |
+
"step": 198
|
| 1397 |
+
},
|
| 1398 |
+
{
|
| 1399 |
+
"epoch": 1.4113475177304964,
|
| 1400 |
+
"grad_norm": 0.202161967754364,
|
| 1401 |
+
"learning_rate": 6.426681121245527e-06,
|
| 1402 |
+
"loss": 0.9836,
|
| 1403 |
+
"step": 199
|
| 1404 |
+
},
|
| 1405 |
+
{
|
| 1406 |
+
"epoch": 1.4184397163120568,
|
| 1407 |
+
"grad_norm": 0.20478235185146332,
|
| 1408 |
+
"learning_rate": 6.387014543809224e-06,
|
| 1409 |
+
"loss": 0.9643,
|
| 1410 |
+
"step": 200
|
| 1411 |
+
},
|
| 1412 |
+
{
|
| 1413 |
+
"epoch": 1.425531914893617,
|
| 1414 |
+
"grad_norm": 0.20939572155475616,
|
| 1415 |
+
"learning_rate": 6.34725316577129e-06,
|
| 1416 |
+
"loss": 0.9507,
|
| 1417 |
+
"step": 201
|
| 1418 |
+
},
|
| 1419 |
+
{
|
| 1420 |
+
"epoch": 1.4326241134751774,
|
| 1421 |
+
"grad_norm": 0.2136376053094864,
|
| 1422 |
+
"learning_rate": 6.3073997047691e-06,
|
| 1423 |
+
"loss": 0.9682,
|
| 1424 |
+
"step": 202
|
| 1425 |
+
},
|
| 1426 |
+
{
|
| 1427 |
+
"epoch": 1.4397163120567376,
|
| 1428 |
+
"grad_norm": 0.18985818326473236,
|
| 1429 |
+
"learning_rate": 6.26745688473377e-06,
|
| 1430 |
+
"loss": 0.9759,
|
| 1431 |
+
"step": 203
|
| 1432 |
+
},
|
| 1433 |
+
{
|
| 1434 |
+
"epoch": 1.4468085106382977,
|
| 1435 |
+
"grad_norm": 0.21012678742408752,
|
| 1436 |
+
"learning_rate": 6.227427435703997e-06,
|
| 1437 |
+
"loss": 0.9834,
|
| 1438 |
+
"step": 204
|
| 1439 |
+
},
|
| 1440 |
+
{
|
| 1441 |
+
"epoch": 1.4539007092198581,
|
| 1442 |
+
"grad_norm": 0.21440032124519348,
|
| 1443 |
+
"learning_rate": 6.187314093639444e-06,
|
| 1444 |
+
"loss": 0.9569,
|
| 1445 |
+
"step": 205
|
| 1446 |
+
},
|
| 1447 |
+
{
|
| 1448 |
+
"epoch": 1.4609929078014185,
|
| 1449 |
+
"grad_norm": 0.21152129769325256,
|
| 1450 |
+
"learning_rate": 6.147119600233758e-06,
|
| 1451 |
+
"loss": 0.9755,
|
| 1452 |
+
"step": 206
|
| 1453 |
+
},
|
| 1454 |
+
{
|
| 1455 |
+
"epoch": 1.4680851063829787,
|
| 1456 |
+
"grad_norm": 0.2023329734802246,
|
| 1457 |
+
"learning_rate": 6.106846702727173e-06,
|
| 1458 |
+
"loss": 0.979,
|
| 1459 |
+
"step": 207
|
| 1460 |
+
},
|
| 1461 |
+
{
|
| 1462 |
+
"epoch": 1.475177304964539,
|
| 1463 |
+
"grad_norm": 0.1883651167154312,
|
| 1464 |
+
"learning_rate": 6.066498153718735e-06,
|
| 1465 |
+
"loss": 0.9468,
|
| 1466 |
+
"step": 208
|
| 1467 |
+
},
|
| 1468 |
+
{
|
| 1469 |
+
"epoch": 1.4822695035460993,
|
| 1470 |
+
"grad_norm": 0.2066640406847,
|
| 1471 |
+
"learning_rate": 6.026076710978172e-06,
|
| 1472 |
+
"loss": 0.9508,
|
| 1473 |
+
"step": 209
|
| 1474 |
+
},
|
| 1475 |
+
{
|
| 1476 |
+
"epoch": 1.4893617021276595,
|
| 1477 |
+
"grad_norm": 0.19015434384346008,
|
| 1478 |
+
"learning_rate": 5.985585137257401e-06,
|
| 1479 |
+
"loss": 0.954,
|
| 1480 |
+
"step": 210
|
| 1481 |
+
},
|
| 1482 |
+
{
|
| 1483 |
+
"epoch": 1.49645390070922,
|
| 1484 |
+
"grad_norm": 0.20339594781398773,
|
| 1485 |
+
"learning_rate": 5.945026200101702e-06,
|
| 1486 |
+
"loss": 0.9522,
|
| 1487 |
+
"step": 211
|
| 1488 |
+
},
|
| 1489 |
+
{
|
| 1490 |
+
"epoch": 1.50354609929078,
|
| 1491 |
+
"grad_norm": 0.20150522887706757,
|
| 1492 |
+
"learning_rate": 5.904402671660551e-06,
|
| 1493 |
+
"loss": 0.9866,
|
| 1494 |
+
"step": 212
|
| 1495 |
+
},
|
| 1496 |
+
{
|
| 1497 |
+
"epoch": 1.5106382978723403,
|
| 1498 |
+
"grad_norm": 0.18772345781326294,
|
| 1499 |
+
"learning_rate": 5.863717328498153e-06,
|
| 1500 |
+
"loss": 0.9712,
|
| 1501 |
+
"step": 213
|
| 1502 |
+
},
|
| 1503 |
+
{
|
| 1504 |
+
"epoch": 1.5177304964539007,
|
| 1505 |
+
"grad_norm": 0.18971088528633118,
|
| 1506 |
+
"learning_rate": 5.82297295140367e-06,
|
| 1507 |
+
"loss": 0.9548,
|
| 1508 |
+
"step": 214
|
| 1509 |
+
},
|
| 1510 |
+
{
|
| 1511 |
+
"epoch": 1.524822695035461,
|
| 1512 |
+
"grad_norm": 0.1919199824333191,
|
| 1513 |
+
"learning_rate": 5.782172325201155e-06,
|
| 1514 |
+
"loss": 0.9512,
|
| 1515 |
+
"step": 215
|
| 1516 |
+
},
|
| 1517 |
+
{
|
| 1518 |
+
"epoch": 1.5319148936170213,
|
| 1519 |
+
"grad_norm": 0.20227546989917755,
|
| 1520 |
+
"learning_rate": 5.74131823855921e-06,
|
| 1521 |
+
"loss": 0.9716,
|
| 1522 |
+
"step": 216
|
| 1523 |
+
},
|
| 1524 |
+
{
|
| 1525 |
+
"epoch": 1.5390070921985815,
|
| 1526 |
+
"grad_norm": 0.20456035435199738,
|
| 1527 |
+
"learning_rate": 5.70041348380039e-06,
|
| 1528 |
+
"loss": 0.9761,
|
| 1529 |
+
"step": 217
|
| 1530 |
+
},
|
| 1531 |
+
{
|
| 1532 |
+
"epoch": 1.5460992907801419,
|
| 1533 |
+
"grad_norm": 0.198979914188385,
|
| 1534 |
+
"learning_rate": 5.659460856710346e-06,
|
| 1535 |
+
"loss": 0.9662,
|
| 1536 |
+
"step": 218
|
| 1537 |
+
},
|
| 1538 |
+
{
|
| 1539 |
+
"epoch": 1.5531914893617023,
|
| 1540 |
+
"grad_norm": 0.20134767889976501,
|
| 1541 |
+
"learning_rate": 5.61846315634674e-06,
|
| 1542 |
+
"loss": 0.9721,
|
| 1543 |
+
"step": 219
|
| 1544 |
+
},
|
| 1545 |
+
{
|
| 1546 |
+
"epoch": 1.5602836879432624,
|
| 1547 |
+
"grad_norm": 0.21277011930942535,
|
| 1548 |
+
"learning_rate": 5.577423184847932e-06,
|
| 1549 |
+
"loss": 0.9434,
|
| 1550 |
+
"step": 220
|
| 1551 |
+
},
|
| 1552 |
+
{
|
| 1553 |
+
"epoch": 1.5673758865248226,
|
| 1554 |
+
"grad_norm": 0.19326528906822205,
|
| 1555 |
+
"learning_rate": 5.53634374724146e-06,
|
| 1556 |
+
"loss": 0.9436,
|
| 1557 |
+
"step": 221
|
| 1558 |
+
},
|
| 1559 |
+
{
|
| 1560 |
+
"epoch": 1.574468085106383,
|
| 1561 |
+
"grad_norm": 0.18982355296611786,
|
| 1562 |
+
"learning_rate": 5.495227651252315e-06,
|
| 1563 |
+
"loss": 0.9463,
|
| 1564 |
+
"step": 222
|
| 1565 |
+
},
|
| 1566 |
+
{
|
| 1567 |
+
"epoch": 1.5815602836879432,
|
| 1568 |
+
"grad_norm": 0.19490861892700195,
|
| 1569 |
+
"learning_rate": 5.4540777071110415e-06,
|
| 1570 |
+
"loss": 0.967,
|
| 1571 |
+
"step": 223
|
| 1572 |
+
},
|
| 1573 |
+
{
|
| 1574 |
+
"epoch": 1.5886524822695036,
|
| 1575 |
+
"grad_norm": 0.2064967155456543,
|
| 1576 |
+
"learning_rate": 5.412896727361663e-06,
|
| 1577 |
+
"loss": 0.9404,
|
| 1578 |
+
"step": 224
|
| 1579 |
+
},
|
| 1580 |
+
{
|
| 1581 |
+
"epoch": 1.5957446808510638,
|
| 1582 |
+
"grad_norm": 0.18899056315422058,
|
| 1583 |
+
"learning_rate": 5.371687526669439e-06,
|
| 1584 |
+
"loss": 0.9714,
|
| 1585 |
+
"step": 225
|
| 1586 |
+
},
|
| 1587 |
+
{
|
| 1588 |
+
"epoch": 1.602836879432624,
|
| 1589 |
+
"grad_norm": 0.2016034871339798,
|
| 1590 |
+
"learning_rate": 5.3304529216284974e-06,
|
| 1591 |
+
"loss": 0.9782,
|
| 1592 |
+
"step": 226
|
| 1593 |
+
},
|
| 1594 |
+
{
|
| 1595 |
+
"epoch": 1.6099290780141844,
|
| 1596 |
+
"grad_norm": 0.19563241302967072,
|
| 1597 |
+
"learning_rate": 5.289195730569321e-06,
|
| 1598 |
+
"loss": 0.9504,
|
| 1599 |
+
"step": 227
|
| 1600 |
+
},
|
| 1601 |
+
{
|
| 1602 |
+
"epoch": 1.6170212765957448,
|
| 1603 |
+
"grad_norm": 0.1931428462266922,
|
| 1604 |
+
"learning_rate": 5.247918773366112e-06,
|
| 1605 |
+
"loss": 0.9631,
|
| 1606 |
+
"step": 228
|
| 1607 |
+
},
|
| 1608 |
+
{
|
| 1609 |
+
"epoch": 1.624113475177305,
|
| 1610 |
+
"grad_norm": 0.18997250497341156,
|
| 1611 |
+
"learning_rate": 5.206624871244066e-06,
|
| 1612 |
+
"loss": 0.9603,
|
| 1613 |
+
"step": 229
|
| 1614 |
+
},
|
| 1615 |
+
{
|
| 1616 |
+
"epoch": 1.6312056737588652,
|
| 1617 |
+
"grad_norm": 0.20812998712062836,
|
| 1618 |
+
"learning_rate": 5.165316846586541e-06,
|
| 1619 |
+
"loss": 0.9441,
|
| 1620 |
+
"step": 230
|
| 1621 |
+
},
|
| 1622 |
+
{
|
| 1623 |
+
"epoch": 1.6382978723404256,
|
| 1624 |
+
"grad_norm": 0.19451972842216492,
|
| 1625 |
+
"learning_rate": 5.123997522742151e-06,
|
| 1626 |
+
"loss": 0.9549,
|
| 1627 |
+
"step": 231
|
| 1628 |
+
},
|
| 1629 |
+
{
|
| 1630 |
+
"epoch": 1.645390070921986,
|
| 1631 |
+
"grad_norm": 0.2104620635509491,
|
| 1632 |
+
"learning_rate": 5.082669723831793e-06,
|
| 1633 |
+
"loss": 0.9516,
|
| 1634 |
+
"step": 232
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"epoch": 1.6524822695035462,
|
| 1638 |
+
"grad_norm": 0.20235127210617065,
|
| 1639 |
+
"learning_rate": 5.041336274555625e-06,
|
| 1640 |
+
"loss": 0.9657,
|
| 1641 |
+
"step": 233
|
| 1642 |
+
},
|
| 1643 |
+
{
|
| 1644 |
+
"epoch": 1.6595744680851063,
|
| 1645 |
+
"grad_norm": 0.21978402137756348,
|
| 1646 |
+
"learning_rate": 5e-06,
|
| 1647 |
+
"loss": 0.9778,
|
| 1648 |
+
"step": 234
|
| 1649 |
+
},
|
| 1650 |
+
{
|
| 1651 |
+
"epoch": 1.6666666666666665,
|
| 1652 |
+
"grad_norm": 0.2063991278409958,
|
| 1653 |
+
"learning_rate": 4.958663725444376e-06,
|
| 1654 |
+
"loss": 0.9612,
|
| 1655 |
+
"step": 235
|
| 1656 |
+
},
|
| 1657 |
+
{
|
| 1658 |
+
"epoch": 1.673758865248227,
|
| 1659 |
+
"grad_norm": 0.22222791612148285,
|
| 1660 |
+
"learning_rate": 4.917330276168208e-06,
|
| 1661 |
+
"loss": 0.9505,
|
| 1662 |
+
"step": 236
|
| 1663 |
+
},
|
| 1664 |
+
{
|
| 1665 |
+
"epoch": 1.6808510638297873,
|
| 1666 |
+
"grad_norm": 0.22436769306659698,
|
| 1667 |
+
"learning_rate": 4.87600247725785e-06,
|
| 1668 |
+
"loss": 0.9807,
|
| 1669 |
+
"step": 237
|
| 1670 |
+
},
|
| 1671 |
+
{
|
| 1672 |
+
"epoch": 1.6879432624113475,
|
| 1673 |
+
"grad_norm": 0.20231737196445465,
|
| 1674 |
+
"learning_rate": 4.8346831534134595e-06,
|
| 1675 |
+
"loss": 0.9621,
|
| 1676 |
+
"step": 238
|
| 1677 |
+
},
|
| 1678 |
+
{
|
| 1679 |
+
"epoch": 1.6950354609929077,
|
| 1680 |
+
"grad_norm": 0.1958695352077484,
|
| 1681 |
+
"learning_rate": 4.793375128755934e-06,
|
| 1682 |
+
"loss": 0.9774,
|
| 1683 |
+
"step": 239
|
| 1684 |
+
},
|
| 1685 |
+
{
|
| 1686 |
+
"epoch": 1.702127659574468,
|
| 1687 |
+
"grad_norm": 0.19618870317935944,
|
| 1688 |
+
"learning_rate": 4.752081226633888e-06,
|
| 1689 |
+
"loss": 0.9311,
|
| 1690 |
+
"step": 240
|
| 1691 |
+
},
|
| 1692 |
+
{
|
| 1693 |
+
"epoch": 1.7092198581560285,
|
| 1694 |
+
"grad_norm": 0.19945023953914642,
|
| 1695 |
+
"learning_rate": 4.710804269430681e-06,
|
| 1696 |
+
"loss": 0.931,
|
| 1697 |
+
"step": 241
|
| 1698 |
+
},
|
| 1699 |
+
{
|
| 1700 |
+
"epoch": 1.7163120567375887,
|
| 1701 |
+
"grad_norm": 0.196953684091568,
|
| 1702 |
+
"learning_rate": 4.669547078371503e-06,
|
| 1703 |
+
"loss": 0.9741,
|
| 1704 |
+
"step": 242
|
| 1705 |
+
},
|
| 1706 |
+
{
|
| 1707 |
+
"epoch": 1.7234042553191489,
|
| 1708 |
+
"grad_norm": 0.2063244730234146,
|
| 1709 |
+
"learning_rate": 4.628312473330563e-06,
|
| 1710 |
+
"loss": 0.9726,
|
| 1711 |
+
"step": 243
|
| 1712 |
+
},
|
| 1713 |
+
{
|
| 1714 |
+
"epoch": 1.7304964539007093,
|
| 1715 |
+
"grad_norm": 0.18242137134075165,
|
| 1716 |
+
"learning_rate": 4.587103272638339e-06,
|
| 1717 |
+
"loss": 0.9472,
|
| 1718 |
+
"step": 244
|
| 1719 |
+
},
|
| 1720 |
+
{
|
| 1721 |
+
"epoch": 1.7375886524822695,
|
| 1722 |
+
"grad_norm": 0.194502592086792,
|
| 1723 |
+
"learning_rate": 4.545922292888959e-06,
|
| 1724 |
+
"loss": 0.9785,
|
| 1725 |
+
"step": 245
|
| 1726 |
+
},
|
| 1727 |
+
{
|
| 1728 |
+
"epoch": 1.7446808510638299,
|
| 1729 |
+
"grad_norm": 0.20667670667171478,
|
| 1730 |
+
"learning_rate": 4.504772348747687e-06,
|
| 1731 |
+
"loss": 0.9584,
|
| 1732 |
+
"step": 246
|
| 1733 |
+
},
|
| 1734 |
+
{
|
| 1735 |
+
"epoch": 1.75177304964539,
|
| 1736 |
+
"grad_norm": 0.22737909853458405,
|
| 1737 |
+
"learning_rate": 4.463656252758543e-06,
|
| 1738 |
+
"loss": 1.0043,
|
| 1739 |
+
"step": 247
|
| 1740 |
+
},
|
| 1741 |
+
{
|
| 1742 |
+
"epoch": 1.7588652482269502,
|
| 1743 |
+
"grad_norm": 0.20659123361110687,
|
| 1744 |
+
"learning_rate": 4.42257681515207e-06,
|
| 1745 |
+
"loss": 0.9615,
|
| 1746 |
+
"step": 248
|
| 1747 |
+
},
|
| 1748 |
+
{
|
| 1749 |
+
"epoch": 1.7659574468085106,
|
| 1750 |
+
"grad_norm": 0.18234670162200928,
|
| 1751 |
+
"learning_rate": 4.381536843653262e-06,
|
| 1752 |
+
"loss": 0.9551,
|
| 1753 |
+
"step": 249
|
| 1754 |
+
},
|
| 1755 |
+
{
|
| 1756 |
+
"epoch": 1.773049645390071,
|
| 1757 |
+
"grad_norm": 0.2069019377231598,
|
| 1758 |
+
"learning_rate": 4.340539143289655e-06,
|
| 1759 |
+
"loss": 0.9866,
|
| 1760 |
+
"step": 250
|
| 1761 |
+
},
|
| 1762 |
+
{
|
| 1763 |
+
"epoch": 1.7801418439716312,
|
| 1764 |
+
"grad_norm": 0.2130233496427536,
|
| 1765 |
+
"learning_rate": 4.299586516199611e-06,
|
| 1766 |
+
"loss": 0.9544,
|
| 1767 |
+
"step": 251
|
| 1768 |
+
},
|
| 1769 |
+
{
|
| 1770 |
+
"epoch": 1.7872340425531914,
|
| 1771 |
+
"grad_norm": 0.2061052918434143,
|
| 1772 |
+
"learning_rate": 4.25868176144079e-06,
|
| 1773 |
+
"loss": 0.9744,
|
| 1774 |
+
"step": 252
|
| 1775 |
+
},
|
| 1776 |
+
{
|
| 1777 |
+
"epoch": 1.7943262411347518,
|
| 1778 |
+
"grad_norm": 0.19117064774036407,
|
| 1779 |
+
"learning_rate": 4.217827674798845e-06,
|
| 1780 |
+
"loss": 0.9386,
|
| 1781 |
+
"step": 253
|
| 1782 |
+
},
|
| 1783 |
+
{
|
| 1784 |
+
"epoch": 1.8014184397163122,
|
| 1785 |
+
"grad_norm": 0.19266286492347717,
|
| 1786 |
+
"learning_rate": 4.17702704859633e-06,
|
| 1787 |
+
"loss": 0.9687,
|
| 1788 |
+
"step": 254
|
| 1789 |
+
},
|
| 1790 |
+
{
|
| 1791 |
+
"epoch": 1.8085106382978724,
|
| 1792 |
+
"grad_norm": 0.18624667823314667,
|
| 1793 |
+
"learning_rate": 4.13628267150185e-06,
|
| 1794 |
+
"loss": 0.9683,
|
| 1795 |
+
"step": 255
|
| 1796 |
+
},
|
| 1797 |
+
{
|
| 1798 |
+
"epoch": 1.8156028368794326,
|
| 1799 |
+
"grad_norm": 0.22691506147384644,
|
| 1800 |
+
"learning_rate": 4.0955973283394525e-06,
|
| 1801 |
+
"loss": 0.9635,
|
| 1802 |
+
"step": 256
|
| 1803 |
+
},
|
| 1804 |
+
{
|
| 1805 |
+
"epoch": 1.8226950354609928,
|
| 1806 |
+
"grad_norm": 0.19554078578948975,
|
| 1807 |
+
"learning_rate": 4.054973799898299e-06,
|
| 1808 |
+
"loss": 0.9584,
|
| 1809 |
+
"step": 257
|
| 1810 |
+
},
|
| 1811 |
+
{
|
| 1812 |
+
"epoch": 1.8297872340425532,
|
| 1813 |
+
"grad_norm": 0.19966286420822144,
|
| 1814 |
+
"learning_rate": 4.0144148627426e-06,
|
| 1815 |
+
"loss": 0.98,
|
| 1816 |
+
"step": 258
|
| 1817 |
+
},
|
| 1818 |
+
{
|
| 1819 |
+
"epoch": 1.8368794326241136,
|
| 1820 |
+
"grad_norm": 0.18636463582515717,
|
| 1821 |
+
"learning_rate": 3.973923289021829e-06,
|
| 1822 |
+
"loss": 0.9292,
|
| 1823 |
+
"step": 259
|
| 1824 |
+
},
|
| 1825 |
+
{
|
| 1826 |
+
"epoch": 1.8439716312056738,
|
| 1827 |
+
"grad_norm": 0.19922591745853424,
|
| 1828 |
+
"learning_rate": 3.9335018462812664e-06,
|
| 1829 |
+
"loss": 0.9495,
|
| 1830 |
+
"step": 260
|
| 1831 |
+
},
|
| 1832 |
+
{
|
| 1833 |
+
"epoch": 1.851063829787234,
|
| 1834 |
+
"grad_norm": 0.1965838074684143,
|
| 1835 |
+
"learning_rate": 3.893153297272829e-06,
|
| 1836 |
+
"loss": 0.9478,
|
| 1837 |
+
"step": 261
|
| 1838 |
+
},
|
| 1839 |
+
{
|
| 1840 |
+
"epoch": 1.8581560283687943,
|
| 1841 |
+
"grad_norm": 0.19277480244636536,
|
| 1842 |
+
"learning_rate": 3.852880399766243e-06,
|
| 1843 |
+
"loss": 0.9529,
|
| 1844 |
+
"step": 262
|
| 1845 |
+
},
|
| 1846 |
+
{
|
| 1847 |
+
"epoch": 1.8652482269503547,
|
| 1848 |
+
"grad_norm": 0.19886280596256256,
|
| 1849 |
+
"learning_rate": 3.8126859063605576e-06,
|
| 1850 |
+
"loss": 0.9703,
|
| 1851 |
+
"step": 263
|
| 1852 |
+
},
|
| 1853 |
+
{
|
| 1854 |
+
"epoch": 1.872340425531915,
|
| 1855 |
+
"grad_norm": 0.19059477746486664,
|
| 1856 |
+
"learning_rate": 3.7725725642960047e-06,
|
| 1857 |
+
"loss": 0.9379,
|
| 1858 |
+
"step": 264
|
| 1859 |
+
},
|
| 1860 |
+
{
|
| 1861 |
+
"epoch": 1.8794326241134751,
|
| 1862 |
+
"grad_norm": 0.18369245529174805,
|
| 1863 |
+
"learning_rate": 3.73254311526623e-06,
|
| 1864 |
+
"loss": 0.9618,
|
| 1865 |
+
"step": 265
|
| 1866 |
+
},
|
| 1867 |
+
{
|
| 1868 |
+
"epoch": 1.8865248226950353,
|
| 1869 |
+
"grad_norm": 0.19077903032302856,
|
| 1870 |
+
"learning_rate": 3.6926002952309015e-06,
|
| 1871 |
+
"loss": 0.9497,
|
| 1872 |
+
"step": 266
|
| 1873 |
+
},
|
| 1874 |
+
{
|
| 1875 |
+
"epoch": 1.8936170212765957,
|
| 1876 |
+
"grad_norm": 0.19216984510421753,
|
| 1877 |
+
"learning_rate": 3.6527468342287104e-06,
|
| 1878 |
+
"loss": 0.9678,
|
| 1879 |
+
"step": 267
|
| 1880 |
+
},
|
| 1881 |
+
{
|
| 1882 |
+
"epoch": 1.900709219858156,
|
| 1883 |
+
"grad_norm": 0.18526242673397064,
|
| 1884 |
+
"learning_rate": 3.6129854561907786e-06,
|
| 1885 |
+
"loss": 0.9648,
|
| 1886 |
+
"step": 268
|
| 1887 |
+
},
|
| 1888 |
+
{
|
| 1889 |
+
"epoch": 1.9078014184397163,
|
| 1890 |
+
"grad_norm": 0.19354566931724548,
|
| 1891 |
+
"learning_rate": 3.573318878754475e-06,
|
| 1892 |
+
"loss": 0.962,
|
| 1893 |
+
"step": 269
|
| 1894 |
+
},
|
| 1895 |
+
{
|
| 1896 |
+
"epoch": 1.9148936170212765,
|
| 1897 |
+
"grad_norm": 0.19122359156608582,
|
| 1898 |
+
"learning_rate": 3.533749813077677e-06,
|
| 1899 |
+
"loss": 0.9795,
|
| 1900 |
+
"step": 270
|
| 1901 |
+
},
|
| 1902 |
+
{
|
| 1903 |
+
"epoch": 1.9219858156028369,
|
| 1904 |
+
"grad_norm": 0.18988463282585144,
|
| 1905 |
+
"learning_rate": 3.4942809636534637e-06,
|
| 1906 |
+
"loss": 0.9648,
|
| 1907 |
+
"step": 271
|
| 1908 |
+
},
|
| 1909 |
+
{
|
| 1910 |
+
"epoch": 1.9290780141843973,
|
| 1911 |
+
"grad_norm": 0.1826263815164566,
|
| 1912 |
+
"learning_rate": 3.4549150281252635e-06,
|
| 1913 |
+
"loss": 0.9593,
|
| 1914 |
+
"step": 272
|
| 1915 |
+
},
|
| 1916 |
+
{
|
| 1917 |
+
"epoch": 1.9361702127659575,
|
| 1918 |
+
"grad_norm": 0.20058442652225494,
|
| 1919 |
+
"learning_rate": 3.4156546971024783e-06,
|
| 1920 |
+
"loss": 0.9538,
|
| 1921 |
+
"step": 273
|
| 1922 |
+
},
|
| 1923 |
+
{
|
| 1924 |
+
"epoch": 1.9432624113475176,
|
| 1925 |
+
"grad_norm": 0.18569344282150269,
|
| 1926 |
+
"learning_rate": 3.3765026539765832e-06,
|
| 1927 |
+
"loss": 0.9328,
|
| 1928 |
+
"step": 274
|
| 1929 |
+
},
|
| 1930 |
+
{
|
| 1931 |
+
"epoch": 1.950354609929078,
|
| 1932 |
+
"grad_norm": 0.1828421801328659,
|
| 1933 |
+
"learning_rate": 3.3374615747377165e-06,
|
| 1934 |
+
"loss": 0.957,
|
| 1935 |
+
"step": 275
|
| 1936 |
+
},
|
| 1937 |
+
{
|
| 1938 |
+
"epoch": 1.9574468085106385,
|
| 1939 |
+
"grad_norm": 0.18512752652168274,
|
| 1940 |
+
"learning_rate": 3.298534127791785e-06,
|
| 1941 |
+
"loss": 0.9555,
|
| 1942 |
+
"step": 276
|
| 1943 |
+
},
|
| 1944 |
+
{
|
| 1945 |
+
"epoch": 1.9645390070921986,
|
| 1946 |
+
"grad_norm": 0.1988511085510254,
|
| 1947 |
+
"learning_rate": 3.259722973778078e-06,
|
| 1948 |
+
"loss": 0.9542,
|
| 1949 |
+
"step": 277
|
| 1950 |
+
},
|
| 1951 |
+
{
|
| 1952 |
+
"epoch": 1.9716312056737588,
|
| 1953 |
+
"grad_norm": 0.20536436140537262,
|
| 1954 |
+
"learning_rate": 3.2210307653874175e-06,
|
| 1955 |
+
"loss": 0.9732,
|
| 1956 |
+
"step": 278
|
| 1957 |
+
},
|
| 1958 |
+
{
|
| 1959 |
+
"epoch": 1.978723404255319,
|
| 1960 |
+
"grad_norm": 0.18166613578796387,
|
| 1961 |
+
"learning_rate": 3.1824601471808504e-06,
|
| 1962 |
+
"loss": 0.9675,
|
| 1963 |
+
"step": 279
|
| 1964 |
+
},
|
| 1965 |
+
{
|
| 1966 |
+
"epoch": 1.9858156028368794,
|
| 1967 |
+
"grad_norm": 0.17907901108264923,
|
| 1968 |
+
"learning_rate": 3.1440137554088957e-06,
|
| 1969 |
+
"loss": 0.9576,
|
| 1970 |
+
"step": 280
|
| 1971 |
+
},
|
| 1972 |
+
{
|
| 1973 |
+
"epoch": 1.9929078014184398,
|
| 1974 |
+
"grad_norm": 0.1949305683374405,
|
| 1975 |
+
"learning_rate": 3.105694217831361e-06,
|
| 1976 |
+
"loss": 0.9552,
|
| 1977 |
+
"step": 281
|
| 1978 |
+
},
|
| 1979 |
+
{
|
| 1980 |
+
"epoch": 2.0,
|
| 1981 |
+
"grad_norm": 0.2091778814792633,
|
| 1982 |
+
"learning_rate": 3.06750415353774e-06,
|
| 1983 |
+
"loss": 0.9396,
|
| 1984 |
+
"step": 282
|
| 1985 |
+
},
|
| 1986 |
+
{
|
| 1987 |
+
"epoch": 2.00709219858156,
|
| 1988 |
+
"grad_norm": 0.22290584444999695,
|
| 1989 |
+
"learning_rate": 3.0294461727681936e-06,
|
| 1990 |
+
"loss": 0.9482,
|
| 1991 |
+
"step": 283
|
| 1992 |
+
},
|
| 1993 |
+
{
|
| 1994 |
+
"epoch": 2.0141843971631204,
|
| 1995 |
+
"grad_norm": 0.2103525847196579,
|
| 1996 |
+
"learning_rate": 2.991522876735154e-06,
|
| 1997 |
+
"loss": 0.9448,
|
| 1998 |
+
"step": 284
|
| 1999 |
+
},
|
| 2000 |
+
{
|
| 2001 |
+
"epoch": 2.021276595744681,
|
| 2002 |
+
"grad_norm": 0.18519747257232666,
|
| 2003 |
+
"learning_rate": 2.9537368574455304e-06,
|
| 2004 |
+
"loss": 0.9343,
|
| 2005 |
+
"step": 285
|
| 2006 |
+
},
|
| 2007 |
+
{
|
| 2008 |
+
"epoch": 2.028368794326241,
|
| 2009 |
+
"grad_norm": 0.2083410620689392,
|
| 2010 |
+
"learning_rate": 2.9160906975235493e-06,
|
| 2011 |
+
"loss": 0.937,
|
| 2012 |
+
"step": 286
|
| 2013 |
+
},
|
| 2014 |
+
{
|
| 2015 |
+
"epoch": 2.0354609929078014,
|
| 2016 |
+
"grad_norm": 0.21592524647712708,
|
| 2017 |
+
"learning_rate": 2.8785869700342322e-06,
|
| 2018 |
+
"loss": 0.9449,
|
| 2019 |
+
"step": 287
|
| 2020 |
+
},
|
| 2021 |
+
{
|
| 2022 |
+
"epoch": 2.0425531914893615,
|
| 2023 |
+
"grad_norm": 0.18326295912265778,
|
| 2024 |
+
"learning_rate": 2.8412282383075362e-06,
|
| 2025 |
+
"loss": 0.9343,
|
| 2026 |
+
"step": 288
|
| 2027 |
+
},
|
| 2028 |
+
{
|
| 2029 |
+
"epoch": 2.049645390070922,
|
| 2030 |
+
"grad_norm": 0.1971648782491684,
|
| 2031 |
+
"learning_rate": 2.804017055763149e-06,
|
| 2032 |
+
"loss": 0.9498,
|
| 2033 |
+
"step": 289
|
| 2034 |
+
},
|
| 2035 |
+
{
|
| 2036 |
+
"epoch": 2.0567375886524824,
|
| 2037 |
+
"grad_norm": 0.1955241709947586,
|
| 2038 |
+
"learning_rate": 2.766955965735968e-06,
|
| 2039 |
+
"loss": 0.9332,
|
| 2040 |
+
"step": 290
|
| 2041 |
+
},
|
| 2042 |
+
{
|
| 2043 |
+
"epoch": 2.0638297872340425,
|
| 2044 |
+
"grad_norm": 0.18832024931907654,
|
| 2045 |
+
"learning_rate": 2.7300475013022666e-06,
|
| 2046 |
+
"loss": 0.9281,
|
| 2047 |
+
"step": 291
|
| 2048 |
+
},
|
| 2049 |
+
{
|
| 2050 |
+
"epoch": 2.0709219858156027,
|
| 2051 |
+
"grad_norm": 0.18282903730869293,
|
| 2052 |
+
"learning_rate": 2.693294185106562e-06,
|
| 2053 |
+
"loss": 0.9624,
|
| 2054 |
+
"step": 292
|
| 2055 |
+
},
|
| 2056 |
+
{
|
| 2057 |
+
"epoch": 2.078014184397163,
|
| 2058 |
+
"grad_norm": 0.1973196119070053,
|
| 2059 |
+
"learning_rate": 2.6566985291891932e-06,
|
| 2060 |
+
"loss": 0.9235,
|
| 2061 |
+
"step": 293
|
| 2062 |
+
},
|
| 2063 |
+
{
|
| 2064 |
+
"epoch": 2.0851063829787235,
|
| 2065 |
+
"grad_norm": 0.1856066882610321,
|
| 2066 |
+
"learning_rate": 2.6202630348146323e-06,
|
| 2067 |
+
"loss": 0.9416,
|
| 2068 |
+
"step": 294
|
| 2069 |
+
},
|
| 2070 |
+
{
|
| 2071 |
+
"epoch": 2.0921985815602837,
|
| 2072 |
+
"grad_norm": 0.1804654747247696,
|
| 2073 |
+
"learning_rate": 2.5839901923005207e-06,
|
| 2074 |
+
"loss": 0.9279,
|
| 2075 |
+
"step": 295
|
| 2076 |
+
},
|
| 2077 |
+
{
|
| 2078 |
+
"epoch": 2.099290780141844,
|
| 2079 |
+
"grad_norm": 0.1944091022014618,
|
| 2080 |
+
"learning_rate": 2.5478824808474613e-06,
|
| 2081 |
+
"loss": 0.9446,
|
| 2082 |
+
"step": 296
|
| 2083 |
+
},
|
| 2084 |
+
{
|
| 2085 |
+
"epoch": 2.106382978723404,
|
| 2086 |
+
"grad_norm": 0.19213660061359406,
|
| 2087 |
+
"learning_rate": 2.511942368369566e-06,
|
| 2088 |
+
"loss": 0.9423,
|
| 2089 |
+
"step": 297
|
| 2090 |
+
},
|
| 2091 |
+
{
|
| 2092 |
+
"epoch": 2.1134751773049647,
|
| 2093 |
+
"grad_norm": 0.2019748091697693,
|
| 2094 |
+
"learning_rate": 2.476172311325783e-06,
|
| 2095 |
+
"loss": 0.9366,
|
| 2096 |
+
"step": 298
|
| 2097 |
+
},
|
| 2098 |
+
{
|
| 2099 |
+
"epoch": 2.120567375886525,
|
| 2100 |
+
"grad_norm": 0.18752597272396088,
|
| 2101 |
+
"learning_rate": 2.4405747545519966e-06,
|
| 2102 |
+
"loss": 0.943,
|
| 2103 |
+
"step": 299
|
| 2104 |
+
},
|
| 2105 |
+
{
|
| 2106 |
+
"epoch": 2.127659574468085,
|
| 2107 |
+
"grad_norm": 0.21256884932518005,
|
| 2108 |
+
"learning_rate": 2.4051521310939258e-06,
|
| 2109 |
+
"loss": 0.946,
|
| 2110 |
+
"step": 300
|
| 2111 |
+
},
|
| 2112 |
+
{
|
| 2113 |
+
"epoch": 2.1347517730496453,
|
| 2114 |
+
"grad_norm": 0.19255441427230835,
|
| 2115 |
+
"learning_rate": 2.3699068620408305e-06,
|
| 2116 |
+
"loss": 0.9518,
|
| 2117 |
+
"step": 301
|
| 2118 |
+
},
|
| 2119 |
+
{
|
| 2120 |
+
"epoch": 2.141843971631206,
|
| 2121 |
+
"grad_norm": 0.19296486675739288,
|
| 2122 |
+
"learning_rate": 2.3348413563600324e-06,
|
| 2123 |
+
"loss": 0.9204,
|
| 2124 |
+
"step": 302
|
| 2125 |
+
},
|
| 2126 |
+
{
|
| 2127 |
+
"epoch": 2.148936170212766,
|
| 2128 |
+
"grad_norm": 0.185301274061203,
|
| 2129 |
+
"learning_rate": 2.2999580107322654e-06,
|
| 2130 |
+
"loss": 0.9496,
|
| 2131 |
+
"step": 303
|
| 2132 |
+
},
|
| 2133 |
+
{
|
| 2134 |
+
"epoch": 2.1560283687943262,
|
| 2135 |
+
"grad_norm": 0.18680962920188904,
|
| 2136 |
+
"learning_rate": 2.265259209387867e-06,
|
| 2137 |
+
"loss": 0.9317,
|
| 2138 |
+
"step": 304
|
| 2139 |
+
},
|
| 2140 |
+
{
|
| 2141 |
+
"epoch": 2.1631205673758864,
|
| 2142 |
+
"grad_norm": 0.18720752000808716,
|
| 2143 |
+
"learning_rate": 2.2307473239438153e-06,
|
| 2144 |
+
"loss": 0.9442,
|
| 2145 |
+
"step": 305
|
| 2146 |
+
},
|
| 2147 |
+
{
|
| 2148 |
+
"epoch": 2.1702127659574466,
|
| 2149 |
+
"grad_norm": 0.17528828978538513,
|
| 2150 |
+
"learning_rate": 2.1964247132416373e-06,
|
| 2151 |
+
"loss": 0.911,
|
| 2152 |
+
"step": 306
|
| 2153 |
+
},
|
| 2154 |
+
{
|
| 2155 |
+
"epoch": 2.1773049645390072,
|
| 2156 |
+
"grad_norm": 0.20737330615520477,
|
| 2157 |
+
"learning_rate": 2.1622937231861823e-06,
|
| 2158 |
+
"loss": 0.9548,
|
| 2159 |
+
"step": 307
|
| 2160 |
+
},
|
| 2161 |
+
{
|
| 2162 |
+
"epoch": 2.1843971631205674,
|
| 2163 |
+
"grad_norm": 0.19633513689041138,
|
| 2164 |
+
"learning_rate": 2.1283566865852824e-06,
|
| 2165 |
+
"loss": 0.9262,
|
| 2166 |
+
"step": 308
|
| 2167 |
+
},
|
| 2168 |
+
{
|
| 2169 |
+
"epoch": 2.1914893617021276,
|
| 2170 |
+
"grad_norm": 0.1804002970457077,
|
| 2171 |
+
"learning_rate": 2.094615922990309e-06,
|
| 2172 |
+
"loss": 0.9323,
|
| 2173 |
+
"step": 309
|
| 2174 |
+
},
|
| 2175 |
+
{
|
| 2176 |
+
"epoch": 2.198581560283688,
|
| 2177 |
+
"grad_norm": 0.19144874811172485,
|
| 2178 |
+
"learning_rate": 2.061073738537635e-06,
|
| 2179 |
+
"loss": 0.9455,
|
| 2180 |
+
"step": 310
|
| 2181 |
+
},
|
| 2182 |
+
{
|
| 2183 |
+
"epoch": 2.2056737588652484,
|
| 2184 |
+
"grad_norm": 0.1808236688375473,
|
| 2185 |
+
"learning_rate": 2.027732425791011e-06,
|
| 2186 |
+
"loss": 0.9518,
|
| 2187 |
+
"step": 311
|
| 2188 |
+
},
|
| 2189 |
+
{
|
| 2190 |
+
"epoch": 2.2127659574468086,
|
| 2191 |
+
"grad_norm": 0.1889459639787674,
|
| 2192 |
+
"learning_rate": 1.9945942635848745e-06,
|
| 2193 |
+
"loss": 0.9645,
|
| 2194 |
+
"step": 312
|
| 2195 |
+
},
|
| 2196 |
+
{
|
| 2197 |
+
"epoch": 2.219858156028369,
|
| 2198 |
+
"grad_norm": 0.18562434613704681,
|
| 2199 |
+
"learning_rate": 1.961661516868594e-06,
|
| 2200 |
+
"loss": 0.9139,
|
| 2201 |
+
"step": 313
|
| 2202 |
+
},
|
| 2203 |
+
{
|
| 2204 |
+
"epoch": 2.226950354609929,
|
| 2205 |
+
"grad_norm": 0.19447514414787292,
|
| 2206 |
+
"learning_rate": 1.928936436551661e-06,
|
| 2207 |
+
"loss": 0.9423,
|
| 2208 |
+
"step": 314
|
| 2209 |
+
},
|
| 2210 |
+
{
|
| 2211 |
+
"epoch": 2.2340425531914896,
|
| 2212 |
+
"grad_norm": 0.18953830003738403,
|
| 2213 |
+
"learning_rate": 1.8964212593498444e-06,
|
| 2214 |
+
"loss": 0.9662,
|
| 2215 |
+
"step": 315
|
| 2216 |
+
},
|
| 2217 |
+
{
|
| 2218 |
+
"epoch": 2.2411347517730498,
|
| 2219 |
+
"grad_norm": 0.18533062934875488,
|
| 2220 |
+
"learning_rate": 1.864118207632315e-06,
|
| 2221 |
+
"loss": 0.9559,
|
| 2222 |
+
"step": 316
|
| 2223 |
+
},
|
| 2224 |
+
{
|
| 2225 |
+
"epoch": 2.24822695035461,
|
| 2226 |
+
"grad_norm": 0.18788859248161316,
|
| 2227 |
+
"learning_rate": 1.8320294892697477e-06,
|
| 2228 |
+
"loss": 0.9379,
|
| 2229 |
+
"step": 317
|
| 2230 |
+
},
|
| 2231 |
+
{
|
| 2232 |
+
"epoch": 2.25531914893617,
|
| 2233 |
+
"grad_norm": 0.18943147361278534,
|
| 2234 |
+
"learning_rate": 1.8001572974834169e-06,
|
| 2235 |
+
"loss": 0.9275,
|
| 2236 |
+
"step": 318
|
| 2237 |
+
},
|
| 2238 |
+
{
|
| 2239 |
+
"epoch": 2.2624113475177303,
|
| 2240 |
+
"grad_norm": 0.17720432579517365,
|
| 2241 |
+
"learning_rate": 1.7685038106952952e-06,
|
| 2242 |
+
"loss": 0.9148,
|
| 2243 |
+
"step": 319
|
| 2244 |
+
},
|
| 2245 |
+
{
|
| 2246 |
+
"epoch": 2.269503546099291,
|
| 2247 |
+
"grad_norm": 0.17993542551994324,
|
| 2248 |
+
"learning_rate": 1.7370711923791567e-06,
|
| 2249 |
+
"loss": 0.9403,
|
| 2250 |
+
"step": 320
|
| 2251 |
+
},
|
| 2252 |
+
{
|
| 2253 |
+
"epoch": 2.276595744680851,
|
| 2254 |
+
"grad_norm": 0.1805652678012848,
|
| 2255 |
+
"learning_rate": 1.7058615909127102e-06,
|
| 2256 |
+
"loss": 0.9404,
|
| 2257 |
+
"step": 321
|
| 2258 |
+
},
|
| 2259 |
+
{
|
| 2260 |
+
"epoch": 2.2836879432624113,
|
| 2261 |
+
"grad_norm": 0.1839425414800644,
|
| 2262 |
+
"learning_rate": 1.6748771394307584e-06,
|
| 2263 |
+
"loss": 0.949,
|
| 2264 |
+
"step": 322
|
| 2265 |
+
},
|
| 2266 |
+
{
|
| 2267 |
+
"epoch": 2.2907801418439715,
|
| 2268 |
+
"grad_norm": 0.18259738385677338,
|
| 2269 |
+
"learning_rate": 1.6441199556794036e-06,
|
| 2270 |
+
"loss": 0.9494,
|
| 2271 |
+
"step": 323
|
| 2272 |
+
},
|
| 2273 |
+
{
|
| 2274 |
+
"epoch": 2.297872340425532,
|
| 2275 |
+
"grad_norm": 0.1737503856420517,
|
| 2276 |
+
"learning_rate": 1.6135921418712959e-06,
|
| 2277 |
+
"loss": 0.941,
|
| 2278 |
+
"step": 324
|
| 2279 |
+
},
|
| 2280 |
+
{
|
| 2281 |
+
"epoch": 2.3049645390070923,
|
| 2282 |
+
"grad_norm": 0.18038944900035858,
|
| 2283 |
+
"learning_rate": 1.5832957845419583e-06,
|
| 2284 |
+
"loss": 0.9294,
|
| 2285 |
+
"step": 325
|
| 2286 |
+
},
|
| 2287 |
+
{
|
| 2288 |
+
"epoch": 2.3120567375886525,
|
| 2289 |
+
"grad_norm": 0.18109843134880066,
|
| 2290 |
+
"learning_rate": 1.5532329544071712e-06,
|
| 2291 |
+
"loss": 0.9169,
|
| 2292 |
+
"step": 326
|
| 2293 |
+
},
|
| 2294 |
+
{
|
| 2295 |
+
"epoch": 2.3191489361702127,
|
| 2296 |
+
"grad_norm": 0.18001320958137512,
|
| 2297 |
+
"learning_rate": 1.5234057062214403e-06,
|
| 2298 |
+
"loss": 0.8874,
|
| 2299 |
+
"step": 327
|
| 2300 |
+
},
|
| 2301 |
+
{
|
| 2302 |
+
"epoch": 2.326241134751773,
|
| 2303 |
+
"grad_norm": 0.1792004108428955,
|
| 2304 |
+
"learning_rate": 1.4938160786375571e-06,
|
| 2305 |
+
"loss": 0.9449,
|
| 2306 |
+
"step": 328
|
| 2307 |
+
},
|
| 2308 |
+
{
|
| 2309 |
+
"epoch": 2.3333333333333335,
|
| 2310 |
+
"grad_norm": 0.17555391788482666,
|
| 2311 |
+
"learning_rate": 1.4644660940672628e-06,
|
| 2312 |
+
"loss": 0.9435,
|
| 2313 |
+
"step": 329
|
| 2314 |
+
},
|
| 2315 |
+
{
|
| 2316 |
+
"epoch": 2.3404255319148937,
|
| 2317 |
+
"grad_norm": 0.17382599413394928,
|
| 2318 |
+
"learning_rate": 1.4353577585430152e-06,
|
| 2319 |
+
"loss": 0.9263,
|
| 2320 |
+
"step": 330
|
| 2321 |
+
},
|
| 2322 |
+
{
|
| 2323 |
+
"epoch": 2.347517730496454,
|
| 2324 |
+
"grad_norm": 0.17780086398124695,
|
| 2325 |
+
"learning_rate": 1.406493061580881e-06,
|
| 2326 |
+
"loss": 0.9481,
|
| 2327 |
+
"step": 331
|
| 2328 |
+
},
|
| 2329 |
+
{
|
| 2330 |
+
"epoch": 2.354609929078014,
|
| 2331 |
+
"grad_norm": 0.18043147027492523,
|
| 2332 |
+
"learning_rate": 1.3778739760445552e-06,
|
| 2333 |
+
"loss": 0.9431,
|
| 2334 |
+
"step": 332
|
| 2335 |
+
},
|
| 2336 |
+
{
|
| 2337 |
+
"epoch": 2.3617021276595747,
|
| 2338 |
+
"grad_norm": 0.19360171258449554,
|
| 2339 |
+
"learning_rate": 1.3495024580105193e-06,
|
| 2340 |
+
"loss": 0.9468,
|
| 2341 |
+
"step": 333
|
| 2342 |
+
},
|
| 2343 |
+
{
|
| 2344 |
+
"epoch": 2.368794326241135,
|
| 2345 |
+
"grad_norm": 0.18124336004257202,
|
| 2346 |
+
"learning_rate": 1.321380446634342e-06,
|
| 2347 |
+
"loss": 0.9493,
|
| 2348 |
+
"step": 334
|
| 2349 |
+
},
|
| 2350 |
+
{
|
| 2351 |
+
"epoch": 2.375886524822695,
|
| 2352 |
+
"grad_norm": 0.16850939393043518,
|
| 2353 |
+
"learning_rate": 1.293509864018146e-06,
|
| 2354 |
+
"loss": 0.9452,
|
| 2355 |
+
"step": 335
|
| 2356 |
+
},
|
| 2357 |
+
{
|
| 2358 |
+
"epoch": 2.382978723404255,
|
| 2359 |
+
"grad_norm": 0.17136213183403015,
|
| 2360 |
+
"learning_rate": 1.2658926150792321e-06,
|
| 2361 |
+
"loss": 0.9308,
|
| 2362 |
+
"step": 336
|
| 2363 |
+
},
|
| 2364 |
+
{
|
| 2365 |
+
"epoch": 2.3900709219858154,
|
| 2366 |
+
"grad_norm": 0.19403225183486938,
|
| 2367 |
+
"learning_rate": 1.2385305874198778e-06,
|
| 2368 |
+
"loss": 0.9544,
|
| 2369 |
+
"step": 337
|
| 2370 |
+
},
|
| 2371 |
+
{
|
| 2372 |
+
"epoch": 2.397163120567376,
|
| 2373 |
+
"grad_norm": 0.1776721477508545,
|
| 2374 |
+
"learning_rate": 1.2114256511983274e-06,
|
| 2375 |
+
"loss": 0.9473,
|
| 2376 |
+
"step": 338
|
| 2377 |
+
},
|
| 2378 |
+
{
|
| 2379 |
+
"epoch": 2.404255319148936,
|
| 2380 |
+
"grad_norm": 0.17469924688339233,
|
| 2381 |
+
"learning_rate": 1.1845796590009684e-06,
|
| 2382 |
+
"loss": 0.9388,
|
| 2383 |
+
"step": 339
|
| 2384 |
+
},
|
| 2385 |
+
{
|
| 2386 |
+
"epoch": 2.4113475177304964,
|
| 2387 |
+
"grad_norm": 0.17591865360736847,
|
| 2388 |
+
"learning_rate": 1.157994445715706e-06,
|
| 2389 |
+
"loss": 0.9247,
|
| 2390 |
+
"step": 340
|
| 2391 |
+
},
|
| 2392 |
+
{
|
| 2393 |
+
"epoch": 2.4184397163120566,
|
| 2394 |
+
"grad_norm": 0.17730483412742615,
|
| 2395 |
+
"learning_rate": 1.1316718284065536e-06,
|
| 2396 |
+
"loss": 0.9471,
|
| 2397 |
+
"step": 341
|
| 2398 |
+
},
|
| 2399 |
+
{
|
| 2400 |
+
"epoch": 2.425531914893617,
|
| 2401 |
+
"grad_norm": 0.1710953712463379,
|
| 2402 |
+
"learning_rate": 1.1056136061894386e-06,
|
| 2403 |
+
"loss": 0.9319,
|
| 2404 |
+
"step": 342
|
| 2405 |
+
},
|
| 2406 |
+
{
|
| 2407 |
+
"epoch": 2.4326241134751774,
|
| 2408 |
+
"grad_norm": 0.1860751360654831,
|
| 2409 |
+
"learning_rate": 1.0798215601092354e-06,
|
| 2410 |
+
"loss": 0.9283,
|
| 2411 |
+
"step": 343
|
| 2412 |
+
},
|
| 2413 |
+
{
|
| 2414 |
+
"epoch": 2.4397163120567376,
|
| 2415 |
+
"grad_norm": 0.17981447279453278,
|
| 2416 |
+
"learning_rate": 1.0542974530180327e-06,
|
| 2417 |
+
"loss": 0.9358,
|
| 2418 |
+
"step": 344
|
| 2419 |
+
},
|
| 2420 |
+
{
|
| 2421 |
+
"epoch": 2.4468085106382977,
|
| 2422 |
+
"grad_norm": 0.17886151373386383,
|
| 2423 |
+
"learning_rate": 1.0290430294546449e-06,
|
| 2424 |
+
"loss": 0.957,
|
| 2425 |
+
"step": 345
|
| 2426 |
+
},
|
| 2427 |
+
{
|
| 2428 |
+
"epoch": 2.453900709219858,
|
| 2429 |
+
"grad_norm": 0.18198616802692413,
|
| 2430 |
+
"learning_rate": 1.0040600155253766e-06,
|
| 2431 |
+
"loss": 0.9383,
|
| 2432 |
+
"step": 346
|
| 2433 |
+
},
|
| 2434 |
+
{
|
| 2435 |
+
"epoch": 2.4609929078014185,
|
| 2436 |
+
"grad_norm": 0.1727137714624405,
|
| 2437 |
+
"learning_rate": 9.793501187860432e-07,
|
| 2438 |
+
"loss": 0.9405,
|
| 2439 |
+
"step": 347
|
| 2440 |
+
},
|
| 2441 |
+
{
|
| 2442 |
+
"epoch": 2.4680851063829787,
|
| 2443 |
+
"grad_norm": 0.1783406287431717,
|
| 2444 |
+
"learning_rate": 9.549150281252633e-07,
|
| 2445 |
+
"loss": 0.925,
|
| 2446 |
+
"step": 348
|
| 2447 |
+
},
|
| 2448 |
+
{
|
| 2449 |
+
"epoch": 2.475177304964539,
|
| 2450 |
+
"grad_norm": 0.1867266297340393,
|
| 2451 |
+
"learning_rate": 9.307564136490255e-07,
|
| 2452 |
+
"loss": 0.9561,
|
| 2453 |
+
"step": 349
|
| 2454 |
+
},
|
| 2455 |
+
{
|
| 2456 |
+
"epoch": 2.482269503546099,
|
| 2457 |
+
"grad_norm": 0.1743844449520111,
|
| 2458 |
+
"learning_rate": 9.068759265665384e-07,
|
| 2459 |
+
"loss": 0.9438,
|
| 2460 |
+
"step": 350
|
| 2461 |
+
},
|
| 2462 |
+
{
|
| 2463 |
+
"epoch": 2.4893617021276597,
|
| 2464 |
+
"grad_norm": 0.18149304389953613,
|
| 2465 |
+
"learning_rate": 8.832751990773714e-07,
|
| 2466 |
+
"loss": 0.9382,
|
| 2467 |
+
"step": 351
|
| 2468 |
+
},
|
| 2469 |
+
{
|
| 2470 |
+
"epoch": 2.49645390070922,
|
| 2471 |
+
"grad_norm": 0.17251861095428467,
|
| 2472 |
+
"learning_rate": 8.599558442598998e-07,
|
| 2473 |
+
"loss": 0.9511,
|
| 2474 |
+
"step": 352
|
| 2475 |
+
},
|
| 2476 |
+
{
|
| 2477 |
+
"epoch": 2.50354609929078,
|
| 2478 |
+
"grad_norm": 0.18050801753997803,
|
| 2479 |
+
"learning_rate": 8.369194559610483e-07,
|
| 2480 |
+
"loss": 0.9428,
|
| 2481 |
+
"step": 353
|
| 2482 |
+
},
|
| 2483 |
+
{
|
| 2484 |
+
"epoch": 2.5106382978723403,
|
| 2485 |
+
"grad_norm": 0.17342498898506165,
|
| 2486 |
+
"learning_rate": 8.141676086873574e-07,
|
| 2487 |
+
"loss": 0.9181,
|
| 2488 |
+
"step": 354
|
| 2489 |
+
},
|
| 2490 |
+
{
|
| 2491 |
+
"epoch": 2.5177304964539005,
|
| 2492 |
+
"grad_norm": 0.17598570883274078,
|
| 2493 |
+
"learning_rate": 7.917018574973646e-07,
|
| 2494 |
+
"loss": 0.9198,
|
| 2495 |
+
"step": 355
|
| 2496 |
+
},
|
| 2497 |
+
{
|
| 2498 |
+
"epoch": 2.524822695035461,
|
| 2499 |
+
"grad_norm": 0.1778562217950821,
|
| 2500 |
+
"learning_rate": 7.695237378953224e-07,
|
| 2501 |
+
"loss": 0.9202,
|
| 2502 |
+
"step": 356
|
| 2503 |
+
},
|
| 2504 |
+
{
|
| 2505 |
+
"epoch": 2.5319148936170213,
|
| 2506 |
+
"grad_norm": 0.18783792853355408,
|
| 2507 |
+
"learning_rate": 7.476347657262456e-07,
|
| 2508 |
+
"loss": 0.9768,
|
| 2509 |
+
"step": 357
|
| 2510 |
+
},
|
| 2511 |
+
{
|
| 2512 |
+
"epoch": 2.5390070921985815,
|
| 2513 |
+
"grad_norm": 0.17972299456596375,
|
| 2514 |
+
"learning_rate": 7.260364370723044e-07,
|
| 2515 |
+
"loss": 0.9188,
|
| 2516 |
+
"step": 358
|
| 2517 |
+
},
|
| 2518 |
+
{
|
| 2519 |
+
"epoch": 2.546099290780142,
|
| 2520 |
+
"grad_norm": 0.17691974341869354,
|
| 2521 |
+
"learning_rate": 7.047302281505735e-07,
|
| 2522 |
+
"loss": 0.9454,
|
| 2523 |
+
"step": 359
|
| 2524 |
+
},
|
| 2525 |
+
{
|
| 2526 |
+
"epoch": 2.5531914893617023,
|
| 2527 |
+
"grad_norm": 0.17989806830883026,
|
| 2528 |
+
"learning_rate": 6.837175952121305e-07,
|
| 2529 |
+
"loss": 0.912,
|
| 2530 |
+
"step": 360
|
| 2531 |
+
},
|
| 2532 |
+
{
|
| 2533 |
+
"epoch": 2.5602836879432624,
|
| 2534 |
+
"grad_norm": 0.1767599880695343,
|
| 2535 |
+
"learning_rate": 6.629999744425236e-07,
|
| 2536 |
+
"loss": 0.9118,
|
| 2537 |
+
"step": 361
|
| 2538 |
+
},
|
| 2539 |
+
{
|
| 2540 |
+
"epoch": 2.5673758865248226,
|
| 2541 |
+
"grad_norm": 0.17483338713645935,
|
| 2542 |
+
"learning_rate": 6.425787818636131e-07,
|
| 2543 |
+
"loss": 0.9418,
|
| 2544 |
+
"step": 362
|
| 2545 |
+
},
|
| 2546 |
+
{
|
| 2547 |
+
"epoch": 2.574468085106383,
|
| 2548 |
+
"grad_norm": 0.17281189560890198,
|
| 2549 |
+
"learning_rate": 6.224554132367861e-07,
|
| 2550 |
+
"loss": 0.931,
|
| 2551 |
+
"step": 363
|
| 2552 |
+
},
|
| 2553 |
+
{
|
| 2554 |
+
"epoch": 2.581560283687943,
|
| 2555 |
+
"grad_norm": 0.17162910103797913,
|
| 2556 |
+
"learning_rate": 6.026312439675553e-07,
|
| 2557 |
+
"loss": 0.929,
|
| 2558 |
+
"step": 364
|
| 2559 |
+
},
|
| 2560 |
+
{
|
| 2561 |
+
"epoch": 2.5886524822695036,
|
| 2562 |
+
"grad_norm": 0.17338411509990692,
|
| 2563 |
+
"learning_rate": 5.831076290115572e-07,
|
| 2564 |
+
"loss": 0.9427,
|
| 2565 |
+
"step": 365
|
| 2566 |
+
},
|
| 2567 |
+
{
|
| 2568 |
+
"epoch": 2.595744680851064,
|
| 2569 |
+
"grad_norm": 0.17692013084888458,
|
| 2570 |
+
"learning_rate": 5.63885902781941e-07,
|
| 2571 |
+
"loss": 0.9449,
|
| 2572 |
+
"step": 366
|
| 2573 |
+
},
|
| 2574 |
+
{
|
| 2575 |
+
"epoch": 2.602836879432624,
|
| 2576 |
+
"grad_norm": 0.1654009222984314,
|
| 2577 |
+
"learning_rate": 5.449673790581611e-07,
|
| 2578 |
+
"loss": 0.9613,
|
| 2579 |
+
"step": 367
|
| 2580 |
+
},
|
| 2581 |
+
{
|
| 2582 |
+
"epoch": 2.6099290780141846,
|
| 2583 |
+
"grad_norm": 0.20816448330879211,
|
| 2584 |
+
"learning_rate": 5.263533508961827e-07,
|
| 2585 |
+
"loss": 0.958,
|
| 2586 |
+
"step": 368
|
| 2587 |
+
},
|
| 2588 |
+
{
|
| 2589 |
+
"epoch": 2.617021276595745,
|
| 2590 |
+
"grad_norm": 0.17404668033123016,
|
| 2591 |
+
"learning_rate": 5.080450905401057e-07,
|
| 2592 |
+
"loss": 0.9497,
|
| 2593 |
+
"step": 369
|
| 2594 |
+
},
|
| 2595 |
+
{
|
| 2596 |
+
"epoch": 2.624113475177305,
|
| 2597 |
+
"grad_norm": 0.17764751613140106,
|
| 2598 |
+
"learning_rate": 4.900438493352056e-07,
|
| 2599 |
+
"loss": 0.9436,
|
| 2600 |
+
"step": 370
|
| 2601 |
+
},
|
| 2602 |
+
{
|
| 2603 |
+
"epoch": 2.631205673758865,
|
| 2604 |
+
"grad_norm": 0.16908040642738342,
|
| 2605 |
+
"learning_rate": 4.723508576424063e-07,
|
| 2606 |
+
"loss": 0.9346,
|
| 2607 |
+
"step": 371
|
| 2608 |
+
},
|
| 2609 |
+
{
|
| 2610 |
+
"epoch": 2.6382978723404253,
|
| 2611 |
+
"grad_norm": 0.17620623111724854,
|
| 2612 |
+
"learning_rate": 4.549673247541875e-07,
|
| 2613 |
+
"loss": 0.9394,
|
| 2614 |
+
"step": 372
|
| 2615 |
+
},
|
| 2616 |
+
{
|
| 2617 |
+
"epoch": 2.645390070921986,
|
| 2618 |
+
"grad_norm": 0.17822693288326263,
|
| 2619 |
+
"learning_rate": 4.3789443881193107e-07,
|
| 2620 |
+
"loss": 0.9469,
|
| 2621 |
+
"step": 373
|
| 2622 |
+
},
|
| 2623 |
+
{
|
| 2624 |
+
"epoch": 2.652482269503546,
|
| 2625 |
+
"grad_norm": 0.17219433188438416,
|
| 2626 |
+
"learning_rate": 4.211333667247125e-07,
|
| 2627 |
+
"loss": 0.9541,
|
| 2628 |
+
"step": 374
|
| 2629 |
+
},
|
| 2630 |
+
{
|
| 2631 |
+
"epoch": 2.6595744680851063,
|
| 2632 |
+
"grad_norm": 0.17476940155029297,
|
| 2633 |
+
"learning_rate": 4.046852540895446e-07,
|
| 2634 |
+
"loss": 0.9304,
|
| 2635 |
+
"step": 375
|
| 2636 |
+
},
|
| 2637 |
+
{
|
| 2638 |
+
"epoch": 2.6666666666666665,
|
| 2639 |
+
"grad_norm": 0.16585884988307953,
|
| 2640 |
+
"learning_rate": 3.885512251130763e-07,
|
| 2641 |
+
"loss": 0.9144,
|
| 2642 |
+
"step": 376
|
| 2643 |
+
},
|
| 2644 |
+
{
|
| 2645 |
+
"epoch": 2.673758865248227,
|
| 2646 |
+
"grad_norm": 0.17504124343395233,
|
| 2647 |
+
"learning_rate": 3.7273238253475783e-07,
|
| 2648 |
+
"loss": 0.9349,
|
| 2649 |
+
"step": 377
|
| 2650 |
+
},
|
| 2651 |
+
{
|
| 2652 |
+
"epoch": 2.6808510638297873,
|
| 2653 |
+
"grad_norm": 0.17808987200260162,
|
| 2654 |
+
"learning_rate": 3.572298075514652e-07,
|
| 2655 |
+
"loss": 0.9283,
|
| 2656 |
+
"step": 378
|
| 2657 |
+
},
|
| 2658 |
+
{
|
| 2659 |
+
"epoch": 2.6879432624113475,
|
| 2660 |
+
"grad_norm": 0.17109963297843933,
|
| 2661 |
+
"learning_rate": 3.420445597436056e-07,
|
| 2662 |
+
"loss": 0.923,
|
| 2663 |
+
"step": 379
|
| 2664 |
+
},
|
| 2665 |
+
{
|
| 2666 |
+
"epoch": 2.6950354609929077,
|
| 2667 |
+
"grad_norm": 0.16899849474430084,
|
| 2668 |
+
"learning_rate": 3.271776770026963e-07,
|
| 2669 |
+
"loss": 0.9479,
|
| 2670 |
+
"step": 380
|
| 2671 |
+
},
|
| 2672 |
+
{
|
| 2673 |
+
"epoch": 2.702127659574468,
|
| 2674 |
+
"grad_norm": 0.16950707137584686,
|
| 2675 |
+
"learning_rate": 3.126301754604233e-07,
|
| 2676 |
+
"loss": 0.9423,
|
| 2677 |
+
"step": 381
|
| 2678 |
+
},
|
| 2679 |
+
{
|
| 2680 |
+
"epoch": 2.7092198581560285,
|
| 2681 |
+
"grad_norm": 0.16774339973926544,
|
| 2682 |
+
"learning_rate": 2.984030494191942e-07,
|
| 2683 |
+
"loss": 0.9665,
|
| 2684 |
+
"step": 382
|
| 2685 |
+
},
|
| 2686 |
+
{
|
| 2687 |
+
"epoch": 2.7163120567375887,
|
| 2688 |
+
"grad_norm": 0.17978820204734802,
|
| 2689 |
+
"learning_rate": 2.844972712841737e-07,
|
| 2690 |
+
"loss": 0.9649,
|
| 2691 |
+
"step": 383
|
| 2692 |
+
},
|
| 2693 |
+
{
|
| 2694 |
+
"epoch": 2.723404255319149,
|
| 2695 |
+
"grad_norm": 0.17238686978816986,
|
| 2696 |
+
"learning_rate": 2.7091379149682683e-07,
|
| 2697 |
+
"loss": 0.9391,
|
| 2698 |
+
"step": 384
|
| 2699 |
+
},
|
| 2700 |
+
{
|
| 2701 |
+
"epoch": 2.7304964539007095,
|
| 2702 |
+
"grad_norm": 0.17088578641414642,
|
| 2703 |
+
"learning_rate": 2.57653538469953e-07,
|
| 2704 |
+
"loss": 0.941,
|
| 2705 |
+
"step": 385
|
| 2706 |
+
},
|
| 2707 |
+
{
|
| 2708 |
+
"epoch": 2.7375886524822697,
|
| 2709 |
+
"grad_norm": 0.1665761023759842,
|
| 2710 |
+
"learning_rate": 2.447174185242324e-07,
|
| 2711 |
+
"loss": 0.9552,
|
| 2712 |
+
"step": 386
|
| 2713 |
+
},
|
| 2714 |
+
{
|
| 2715 |
+
"epoch": 2.74468085106383,
|
| 2716 |
+
"grad_norm": 0.17608121037483215,
|
| 2717 |
+
"learning_rate": 2.321063158262793e-07,
|
| 2718 |
+
"loss": 0.9385,
|
| 2719 |
+
"step": 387
|
| 2720 |
+
},
|
| 2721 |
+
{
|
| 2722 |
+
"epoch": 2.75177304964539,
|
| 2723 |
+
"grad_norm": 0.1641273945569992,
|
| 2724 |
+
"learning_rate": 2.198210923282118e-07,
|
| 2725 |
+
"loss": 0.926,
|
| 2726 |
+
"step": 388
|
| 2727 |
+
},
|
| 2728 |
+
{
|
| 2729 |
+
"epoch": 2.7588652482269502,
|
| 2730 |
+
"grad_norm": 0.17171336710453033,
|
| 2731 |
+
"learning_rate": 2.0786258770873647e-07,
|
| 2732 |
+
"loss": 0.932,
|
| 2733 |
+
"step": 389
|
| 2734 |
+
},
|
| 2735 |
+
{
|
| 2736 |
+
"epoch": 2.7659574468085104,
|
| 2737 |
+
"grad_norm": 0.16748470067977905,
|
| 2738 |
+
"learning_rate": 1.962316193157593e-07,
|
| 2739 |
+
"loss": 0.9418,
|
| 2740 |
+
"step": 390
|
| 2741 |
+
},
|
| 2742 |
+
{
|
| 2743 |
+
"epoch": 2.773049645390071,
|
| 2744 |
+
"grad_norm": 0.16219119727611542,
|
| 2745 |
+
"learning_rate": 1.849289821105199e-07,
|
| 2746 |
+
"loss": 0.9365,
|
| 2747 |
+
"step": 391
|
| 2748 |
+
},
|
| 2749 |
+
{
|
| 2750 |
+
"epoch": 2.780141843971631,
|
| 2751 |
+
"grad_norm": 0.1692589968442917,
|
| 2752 |
+
"learning_rate": 1.7395544861325718e-07,
|
| 2753 |
+
"loss": 0.9338,
|
| 2754 |
+
"step": 392
|
| 2755 |
+
},
|
| 2756 |
+
{
|
| 2757 |
+
"epoch": 2.7872340425531914,
|
| 2758 |
+
"grad_norm": 0.17481659352779388,
|
| 2759 |
+
"learning_rate": 1.6331176885040878e-07,
|
| 2760 |
+
"loss": 0.9732,
|
| 2761 |
+
"step": 393
|
| 2762 |
+
},
|
| 2763 |
+
{
|
| 2764 |
+
"epoch": 2.794326241134752,
|
| 2765 |
+
"grad_norm": 0.16948547959327698,
|
| 2766 |
+
"learning_rate": 1.5299867030334815e-07,
|
| 2767 |
+
"loss": 0.9352,
|
| 2768 |
+
"step": 394
|
| 2769 |
+
},
|
| 2770 |
+
{
|
| 2771 |
+
"epoch": 2.801418439716312,
|
| 2772 |
+
"grad_norm": 0.17257732152938843,
|
| 2773 |
+
"learning_rate": 1.4301685785866215e-07,
|
| 2774 |
+
"loss": 0.961,
|
| 2775 |
+
"step": 395
|
| 2776 |
+
},
|
| 2777 |
+
{
|
| 2778 |
+
"epoch": 2.8085106382978724,
|
| 2779 |
+
"grad_norm": 0.1700429916381836,
|
| 2780 |
+
"learning_rate": 1.333670137599713e-07,
|
| 2781 |
+
"loss": 0.9465,
|
| 2782 |
+
"step": 396
|
| 2783 |
+
},
|
| 2784 |
+
{
|
| 2785 |
+
"epoch": 2.8156028368794326,
|
| 2786 |
+
"grad_norm": 0.16693882644176483,
|
| 2787 |
+
"learning_rate": 1.2404979756130142e-07,
|
| 2788 |
+
"loss": 0.9416,
|
| 2789 |
+
"step": 397
|
| 2790 |
+
},
|
| 2791 |
+
{
|
| 2792 |
+
"epoch": 2.8226950354609928,
|
| 2793 |
+
"grad_norm": 0.16439220309257507,
|
| 2794 |
+
"learning_rate": 1.1506584608200366e-07,
|
| 2795 |
+
"loss": 0.9226,
|
| 2796 |
+
"step": 398
|
| 2797 |
+
},
|
| 2798 |
+
{
|
| 2799 |
+
"epoch": 2.829787234042553,
|
| 2800 |
+
"grad_norm": 0.1747705340385437,
|
| 2801 |
+
"learning_rate": 1.0641577336322761e-07,
|
| 2802 |
+
"loss": 0.9604,
|
| 2803 |
+
"step": 399
|
| 2804 |
+
},
|
| 2805 |
+
{
|
| 2806 |
+
"epoch": 2.8368794326241136,
|
| 2807 |
+
"grad_norm": 0.16952365636825562,
|
| 2808 |
+
"learning_rate": 9.810017062595322e-08,
|
| 2809 |
+
"loss": 0.9352,
|
| 2810 |
+
"step": 400
|
| 2811 |
+
},
|
| 2812 |
+
{
|
| 2813 |
+
"epoch": 2.8439716312056738,
|
| 2814 |
+
"grad_norm": 0.1762147843837738,
|
| 2815 |
+
"learning_rate": 9.011960623058202e-08,
|
| 2816 |
+
"loss": 0.9526,
|
| 2817 |
+
"step": 401
|
| 2818 |
+
},
|
| 2819 |
+
{
|
| 2820 |
+
"epoch": 2.851063829787234,
|
| 2821 |
+
"grad_norm": 0.1663467288017273,
|
| 2822 |
+
"learning_rate": 8.247462563808816e-08,
|
| 2823 |
+
"loss": 0.9287,
|
| 2824 |
+
"step": 402
|
| 2825 |
+
},
|
| 2826 |
+
{
|
| 2827 |
+
"epoch": 2.8581560283687946,
|
| 2828 |
+
"grad_norm": 0.1643829047679901,
|
| 2829 |
+
"learning_rate": 7.516575137274162e-08,
|
| 2830 |
+
"loss": 0.9366,
|
| 2831 |
+
"step": 403
|
| 2832 |
+
},
|
| 2833 |
+
{
|
| 2834 |
+
"epoch": 2.8652482269503547,
|
| 2835 |
+
"grad_norm": 0.16540059447288513,
|
| 2836 |
+
"learning_rate": 6.819348298638839e-08,
|
| 2837 |
+
"loss": 0.957,
|
| 2838 |
+
"step": 404
|
| 2839 |
+
},
|
| 2840 |
+
{
|
| 2841 |
+
"epoch": 2.872340425531915,
|
| 2842 |
+
"grad_norm": 0.1641610562801361,
|
| 2843 |
+
"learning_rate": 6.15582970243117e-08,
|
| 2844 |
+
"loss": 0.9502,
|
| 2845 |
+
"step": 405
|
| 2846 |
+
},
|
| 2847 |
+
{
|
| 2848 |
+
"epoch": 2.879432624113475,
|
| 2849 |
+
"grad_norm": 0.16954517364501953,
|
| 2850 |
+
"learning_rate": 5.526064699265754e-08,
|
| 2851 |
+
"loss": 0.9474,
|
| 2852 |
+
"step": 406
|
| 2853 |
+
},
|
| 2854 |
+
{
|
| 2855 |
+
"epoch": 2.8865248226950353,
|
| 2856 |
+
"grad_norm": 0.17791299521923065,
|
| 2857 |
+
"learning_rate": 4.930096332744105e-08,
|
| 2858 |
+
"loss": 0.9531,
|
| 2859 |
+
"step": 407
|
| 2860 |
+
},
|
| 2861 |
+
{
|
| 2862 |
+
"epoch": 2.8936170212765955,
|
| 2863 |
+
"grad_norm": 0.1743258535861969,
|
| 2864 |
+
"learning_rate": 4.367965336512403e-08,
|
| 2865 |
+
"loss": 0.965,
|
| 2866 |
+
"step": 408
|
| 2867 |
+
},
|
| 2868 |
+
{
|
| 2869 |
+
"epoch": 2.900709219858156,
|
| 2870 |
+
"grad_norm": 0.16537080705165863,
|
| 2871 |
+
"learning_rate": 3.839710131477492e-08,
|
| 2872 |
+
"loss": 0.9288,
|
| 2873 |
+
"step": 409
|
| 2874 |
+
},
|
| 2875 |
+
{
|
| 2876 |
+
"epoch": 2.9078014184397163,
|
| 2877 |
+
"grad_norm": 0.17257335782051086,
|
| 2878 |
+
"learning_rate": 3.345366823180929e-08,
|
| 2879 |
+
"loss": 0.9151,
|
| 2880 |
+
"step": 410
|
| 2881 |
+
},
|
| 2882 |
+
{
|
| 2883 |
+
"epoch": 2.9148936170212765,
|
| 2884 |
+
"grad_norm": 0.16965629160404205,
|
| 2885 |
+
"learning_rate": 2.884969199331178e-08,
|
| 2886 |
+
"loss": 0.8977,
|
| 2887 |
+
"step": 411
|
| 2888 |
+
},
|
| 2889 |
+
{
|
| 2890 |
+
"epoch": 2.921985815602837,
|
| 2891 |
+
"grad_norm": 0.16547615826129913,
|
| 2892 |
+
"learning_rate": 2.4585487274942922e-08,
|
| 2893 |
+
"loss": 0.9456,
|
| 2894 |
+
"step": 412
|
| 2895 |
+
},
|
| 2896 |
+
{
|
| 2897 |
+
"epoch": 2.9290780141843973,
|
| 2898 |
+
"grad_norm": 0.1668514609336853,
|
| 2899 |
+
"learning_rate": 2.0661345529430777e-08,
|
| 2900 |
+
"loss": 0.9371,
|
| 2901 |
+
"step": 413
|
| 2902 |
+
},
|
| 2903 |
+
{
|
| 2904 |
+
"epoch": 2.9361702127659575,
|
| 2905 |
+
"grad_norm": 0.175437793135643,
|
| 2906 |
+
"learning_rate": 1.7077534966650767e-08,
|
| 2907 |
+
"loss": 0.9365,
|
| 2908 |
+
"step": 414
|
| 2909 |
+
},
|
| 2910 |
+
{
|
| 2911 |
+
"epoch": 2.9432624113475176,
|
| 2912 |
+
"grad_norm": 0.16184265911579132,
|
| 2913 |
+
"learning_rate": 1.383430053529422e-08,
|
| 2914 |
+
"loss": 0.9164,
|
| 2915 |
+
"step": 415
|
| 2916 |
+
},
|
| 2917 |
+
{
|
| 2918 |
+
"epoch": 2.950354609929078,
|
| 2919 |
+
"grad_norm": 0.17287677526474,
|
| 2920 |
+
"learning_rate": 1.0931863906127327e-08,
|
| 2921 |
+
"loss": 0.9402,
|
| 2922 |
+
"step": 416
|
| 2923 |
+
},
|
| 2924 |
+
{
|
| 2925 |
+
"epoch": 2.9574468085106385,
|
| 2926 |
+
"grad_norm": 0.16356982290744781,
|
| 2927 |
+
"learning_rate": 8.37042345683714e-09,
|
| 2928 |
+
"loss": 0.9708,
|
| 2929 |
+
"step": 417
|
| 2930 |
+
},
|
| 2931 |
+
{
|
| 2932 |
+
"epoch": 2.9645390070921986,
|
| 2933 |
+
"grad_norm": 0.16705556213855743,
|
| 2934 |
+
"learning_rate": 6.150154258476315e-09,
|
| 2935 |
+
"loss": 0.9498,
|
| 2936 |
+
"step": 418
|
| 2937 |
+
},
|
| 2938 |
+
{
|
| 2939 |
+
"epoch": 2.971631205673759,
|
| 2940 |
+
"grad_norm": 0.1613406389951706,
|
| 2941 |
+
"learning_rate": 4.2712080634949024e-09,
|
| 2942 |
+
"loss": 0.9287,
|
| 2943 |
+
"step": 419
|
| 2944 |
+
},
|
| 2945 |
+
{
|
| 2946 |
+
"epoch": 2.978723404255319,
|
| 2947 |
+
"grad_norm": 0.1684153974056244,
|
| 2948 |
+
"learning_rate": 2.7337132953697555e-09,
|
| 2949 |
+
"loss": 0.9274,
|
| 2950 |
+
"step": 420
|
| 2951 |
+
},
|
| 2952 |
+
{
|
| 2953 |
+
"epoch": 2.9858156028368796,
|
| 2954 |
+
"grad_norm": 0.16626179218292236,
|
| 2955 |
+
"learning_rate": 1.53777503982655e-09,
|
| 2956 |
+
"loss": 0.9243,
|
| 2957 |
+
"step": 421
|
| 2958 |
+
},
|
| 2959 |
+
{
|
| 2960 |
+
"epoch": 2.99290780141844,
|
| 2961 |
+
"grad_norm": 0.17238499224185944,
|
| 2962 |
+
"learning_rate": 6.834750376549793e-10,
|
| 2963 |
+
"loss": 0.9477,
|
| 2964 |
+
"step": 422
|
| 2965 |
+
},
|
| 2966 |
+
{
|
| 2967 |
+
"epoch": 3.0,
|
| 2968 |
+
"grad_norm": 0.16570501029491425,
|
| 2969 |
+
"learning_rate": 1.7087167912710477e-10,
|
| 2970 |
+
"loss": 0.9324,
|
| 2971 |
+
"step": 423
|
| 2972 |
+
}
|
| 2973 |
+
],
|
| 2974 |
+
"logging_steps": 1,
|
| 2975 |
+
"max_steps": 423,
|
| 2976 |
+
"num_input_tokens_seen": 0,
|
| 2977 |
+
"num_train_epochs": 3,
|
| 2978 |
+
"save_steps": 500,
|
| 2979 |
+
"stateful_callbacks": {
|
| 2980 |
+
"TrainerControl": {
|
| 2981 |
+
"args": {
|
| 2982 |
+
"should_epoch_stop": false,
|
| 2983 |
+
"should_evaluate": false,
|
| 2984 |
+
"should_log": false,
|
| 2985 |
+
"should_save": true,
|
| 2986 |
+
"should_training_stop": true
|
| 2987 |
+
},
|
| 2988 |
+
"attributes": {}
|
| 2989 |
+
}
|
| 2990 |
+
},
|
| 2991 |
+
"total_flos": 2261545899786240.0,
|
| 2992 |
+
"train_batch_size": 1,
|
| 2993 |
+
"trial_name": null,
|
| 2994 |
+
"trial_params": null
|
| 2995 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:810e0b0f68ae49671684020f373cd047296dd4f8f9f1464d80c2484ee310f1e0
|
| 3 |
+
size 7736
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|