File size: 12,740 Bytes
ecfceb8 ee673cb ecfceb8 4a1942c 6742590 4a1942c ee673cb 4a1942c ee673cb 93151b9 ee673cb ecfceb8 4a1942c 6742590 4a1942c 6742590 4a1942c ee673cb 4a1942c ee673cb 4a1942c ee673cb 4a1942c ee673cb 4a1942c ee673cb 4a1942c ee673cb 4a1942c ee673cb 0dbb356 ee673cb 4a1942c ee673cb 6742590 ee673cb 4a1942c ee673cb 4a1942c ee673cb 4a1942c ee673cb 4a1942c ee673cb 4a1942c ee673cb 4a1942c ee673cb 4a1942c ee673cb 4a1942c ee673cb 4a1942c ee673cb 4a1942c ee673cb 4a1942c ee673cb 4a1942c ee673cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
---
base_model: sentence-transformers/all-mpnet-base-v2
library_name: distiller
license: apache-2.0
license_name: apache-2.0
license_link: LICENSE
model_name: codemalt
tags:
- code-search
- code-embeddings
- model2vec
- distillation
- sentence-transformers
- static-embeddings
- tokenlearn
datasets:
- code-search-net/code_search_net
- sentence-transformers/codesearchnet
metrics:
- ndcg@10
- mrr
- recall@5
language:
- code
pipeline_tag: feature-extraction
---
# CodeMalt
**CodeMalt** is a high-performance, code-specialized static embedding model created through Model2Vec distillation of `sentence-transformers/all-mpnet-base-v2`. This model achieves **73.87% NDCG@10** on CodeSearchNet benchmarks while being **14x smaller** and **15,021x faster** than the original teacher model.
## π Performance Highlights
- **NDCG@10**: 0.7387 (Best among all distilled models)
- **Mean Reciprocal Rank (MRR)**: 0.7010
- **Recall@5**: 0.8017
- **Model Size**: 7.6M parameters (vs 109M original)
- **Inference Speed**: 15,021x faster than teacher model
- **Memory Usage**: <1GB RAM (vs 8+ GB VRAM for original)
## π CodeSearchNet Performance by Language
| Language | NDCG@10 | MRR | Recall@5 |
|----------|---------|-----|----------|
| **Python** | 0.7899 | 0.7501 | 0.8421 |
| **JavaScript** | 0.7234 | 0.6801 | 0.7895 |
| **Java** | 0.7456 | 0.7089 | 0.8123 |
| **PHP** | 0.7198 | 0.6856 | 0.7834 |
| **Ruby** | 0.7312 | 0.6934 | 0.7912 |
| **Go** | 0.7223 | 0.6876 | 0.7913 |
## π§ Model Details
- **Teacher Model**: [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Distillation Method**: Model2Vec + Tokenlearn training on CodeSearchNet
- **Architecture**: Static embeddings (no neural network inference required)
- **Embedding Dimensions**: 256
- **Training Data**: CodeSearchNet code-comment pairs across 6 programming languages
- **Optimization**: PCA dimensionality reduction + SIF weighting + Zipf regularization
- **Vocabulary Size**: 29,528
- **Parameters**: 7.6M
- **Size**: 14.4MB
## π― Distiller: Code-Specialized Embedding Toolkit
**Distiller** is an independent toolkit built upon [Model2Vec](https://github.com/MinishLab/model2vec) and [Tokenlearn](https://github.com/MinishLab/tokenlearn) for creating code-specialized static embeddings. This package provides a complete pipeline for distilling, training, and evaluating efficient embedding models optimized for code-related tasks.
> **Note**: This is an independent research project that builds upon the Model2Vec framework. We are not affiliated with the MinishLab Model2Vec team, but acknowledge their excellent foundational work.
>[!Important]
>Check out the comprehensive [REPORT.md](REPORT.md) file generated by this toolkit for detailed performance analysis, model comparisons, and evaluation results across different programming languages.
>[!Warning]
>**Research Finding**: See [NOTES.md](NOTES.md) for critical analysis showing that C4 fine-tuning significantly degraded performance (-16.8% NDCG@10) compared to simple Model2Vec distillation. **Recommendation**: Use basic distillation without additional training for optimal code embedding performance.
The **distiller** package provides a complete pipeline for:
1. **Distilling code-specialized embeddings** from large sentence transformer models using Model2Vec
2. **Comprehensive evaluation** on CodeSearchNet benchmarks across 6 programming languages
3. **Performance benchmarking** (speed, memory, model size analysis)
4. **Advanced training** with tokenlearn for enhanced code understanding
5. **Analysis and reporting** with visualizations and comparison charts
6. **Cloud-scale processing** with Beam support for distributed execution
### Key Benefits
- **π Performance**: Up to 500x faster inference with 50x smaller models
- **π Code-Optimized**: Specialized for code search, classification, and similarity tasks
- **π¬ Comprehensive**: Full evaluation pipeline with CodeSearchNet metrics
- **βοΈ Scalable**: Local and cloud execution with Beam support
- **π Analytical**: Rich reporting with performance charts and comparisons
## π Quick Start
### Installation
```bash
# Install with all dependencies
pip install model2vec[train] torch transformers datasets sentence-transformers
pip install typer pydantic plotly matplotlib seaborn
# Install the distiller package (assuming local development)
pip install -e .
```
### Basic Usage
```bash
# Simple distillation of a teacher model
distiller distill
# Distillation with advanced CodeSearchNet training
distiller distill --train
# Evaluate distilled models on CodeSearchNet
distiller evaluate
# Generate comprehensive analysis report
distiller analyze
```
### Python API
```python
from distiller import distill, evaluate, analyze
# Distill a specific model
results = distill.run_local_distillation(
teacher_models=["microsoft/codebert-base"],
enable_training=True, # Include CodeSearchNet fine-tuning
pca_dims=256
)
# Evaluate on CodeSearchNet
evaluation_results = evaluate.run_evaluation(
models=["."],
max_queries=1000,
languages=["python", "javascript", "java", "go", "php", "ruby"]
)
# Generate analysis report
analyze.main(
results_dir="./code_model2vec/evaluation_results",
model_name="code_model2vec_distilled_models",
output="ANALYSIS_REPORT.md"
)
```
## π Features
### π¬ Distillation Engine
- **Multiple Teacher Models**: Support for 15+ pre-configured teacher models including:
- Code-specialized: `microsoft/codebert-base`, `BAAI/bge-code-v1`, `Salesforce/SFR-Embedding-Code-2B_R`
- General-purpose: `sentence-transformers/all-mpnet-base-v2`, `BAAI/bge-m3`
- Instruction-tuned: `Alibaba-NLP/gte-Qwen2-1.5B-instruct`
- **Advanced Training Pipeline**: Optional tokenlearn-based training following the POTION approach:
1. Model2Vec distillation (basic static embeddings)
2. Feature extraction using sentence transformers
3. Tokenlearn training on CodeSearchNet data
4. Post-training re-regularization (PCA + SIF weighting)
- **Robust Model Handling**: Automatic compatibility checks and specialized handling for problematic models
### π Evaluation Framework
- **CodeSearchNet Evaluation**: Standard code search benchmarks across 6 programming languages
- **Retrieval Metrics**: NDCG@k, MRR, Recall@k, Mean/Median Rank
- **Performance Benchmarking**:
- Model size analysis (disk usage, parameters, memory footprint)
- Inference speed testing (various batch sizes and text lengths)
- CPU vs GPU performance comparison
- Memory scaling analysis
### π Analysis & Reporting
- **Comprehensive Reports**: Automated generation of analysis reports with:
- Performance comparison tables
- Language-specific radar charts
- Efficiency analysis (performance vs model size)
- Peer model comparisons
- **Rich Visualizations**: Plotly and Matplotlib charts including:
- Multi-model performance heatmaps
- Batch size scaling curves
- Memory usage patterns
- Model efficiency scatter plots
### βοΈ Cloud Integration
- **Beam Support**: Distributed execution on Beam cloud infrastructure
- **Volume Management**: Persistent storage with checkpoint support
- **Resource Optimization**: GPU-optimized configurations (A100-40G default)
- **Automatic Syncing**: Seamless model and result synchronization
## π οΈ CLI Reference
### `distiller distill`
Distill teacher models into efficient static embeddings.
```bash
distiller distill [OPTIONS]
Options:
--use-beam Use Beam cloud for distillation
--train Enable advanced training (CodeSearchNet fine-tuning)
--teacher-models TEXT Specific teacher models to distill (can be repeated)
--pca-dims INTEGER PCA dimensions (default: 256)
--clear-cache Clear HuggingFace cache for problematic models
```
**Examples:**
```bash
# Basic distillation of all default models
distiller distill
# Train specific models with advanced CodeSearchNet fine-tuning
distiller distill --train --teacher-models microsoft/codebert-base --teacher-models BAAI/bge-code-v1
# Use Beam cloud with custom PCA dimensions
distiller distill --use-beam --train --pca-dims 512
```
### `distiller evaluate`
Evaluate models on CodeSearchNet benchmarks with performance analysis.
```bash
distiller evaluate [OPTIONS]
Options:
--use-beam Use Beam cloud for evaluation
--skip-third-party Skip third-party models evaluation
--skip-benchmark Skip performance benchmarking
--max-queries INTEGER Maximum queries per language (default: 100)
```
**Examples:**
```bash
# Comprehensive evaluation with benchmarking
distiller evaluate --max-queries 1000
# Quick evaluation without performance benchmarks
distiller evaluate --skip-benchmark --max-queries 100
# Cloud-based evaluation
distiller evaluate --use-beam --max-queries 500
```
### `distiller analyze`
Generate comprehensive analysis reports with visualizations.
```bash
distiller analyze [OPTIONS]
Options:
--results-dir PATH Results directory (default: code_model2vec/evaluation_results)
--model-name TEXT Model name for analysis (default: gte_qwen2_m2v_code (Ours))
--output PATH Output report file (default: REPORT.md)
--export-csv PATH Export results to CSV file
```
**Examples:**
```bash
# Generate standard analysis report
distiller analyze
# Custom analysis with CSV export
distiller analyze --model-name "my_distilled_model" --output custom_report.md --export-csv results.csv
# Analyze specific results directory
distiller analyze --results-dir ./custom_results --output analysis.md
```
## π Directory Structure
The distiller uses a standardized directory structure:
```
code_model2vec/
βββ base/ # Basic distilled models (Step 1)
β βββ code_model2vec_{teacher_name}/
βββ final/ # Final models (copied from base or after training)
β βββ code_model2vec_{teacher_name}[_fine_tuned]/
βββ evaluation_results/ # CodeSearchNet evaluation results
β βββ comprehensive_eval_{model}.json
βββ benchmark_results/ # Performance benchmark results
βββ analysis_results/ # Analysis reports and charts
β βββ charts/
βββ checkpoints/ # Training checkpoints
βββ cache/ # Temporary cache files
```
## βοΈ Configuration
### Teacher Models
Default supported teacher models (configured in `config.py`):
```python
TEACHER_MODELS = [
"Alibaba-NLP/gte-Qwen2-1.5B-instruct", # Instruction-tuned
"BAAI/bge-m3", # Multilingual
"jinaai/jina-embeddings-v3", # Modern architecture
"microsoft/codebert-base", # Code-specialized
"microsoft/graphcodebert-base", # Graph-aware code
"sentence-transformers/all-mpnet-base-v2", # General-purpose
# ... and more
]
```
### Distillation Parameters
```python
# Model2Vec distillation settings
optimal_pca_dims: int = 256
sif_coefficient: float = 1e-3
apply_zipf: bool = True
# Tokenlearn training settings (when --train is enabled)
tokenlearn_dataset: str = "sentence-transformers/codesearchnet"
tokenlearn_text_key: str = "code" # Use code field for training
```
### Evaluation Settings
```python
# CodeSearchNet evaluation
evaluation_languages = ["python", "java", "javascript", "php", "ruby", "go"]
max_queries_per_language: int = 1000
evaluation_metrics = ["ndcg@1", "ndcg@5", "ndcg@10", "mrr", "recall@1", "recall@5", "recall@10"]
```
## π License
This project is licensed under the Apache 2.0 License - see the [LICENSE](LICENSE) file for details.
## π Acknowledgments
This independent research project builds upon several excellent open-source foundations:
- [Model2Vec](https://github.com/MinishLab/model2vec) by MinishLab - Core static embedding distillation framework
- [Tokenlearn](https://github.com/MinishLab/tokenlearn) by MinishLab - Advanced token-level training methodology
- [CodeSearchNet](https://github.com/github/CodeSearchNet) by GitHub - Code search benchmark dataset and evaluation framework
- [Sentence Transformers](https://github.com/UKPLab/sentence-transformers) by UKP Lab - Teacher model ecosystem and training framework
- [Beam](https://beam.cloud) - Distributed cloud computing infrastructure
- [Transformers](https://github.com/huggingface/transformers) by Hugging Face - Model loading and tokenization utilities
**Note**: While this toolkit leverages Model2Vec and Tokenlearn, it is an independent research contribution and is not officially associated with or endorsed by the MinishLab team.
|