File size: 69,039 Bytes
ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ee673cb 454e47c ea0b2a0 ee673cb ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 ee673cb 8083c06 ee673cb 7837959 ee673cb ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 ee673cb 454e47c ea0b2a0 454e47c ea0b2a0 ee673cb ea0b2a0 ee673cb ea0b2a0 ee673cb ea0b2a0 ee673cb ea0b2a0 ee673cb ea0b2a0 ee673cb ea0b2a0 454e47c ea0b2a0 ee673cb ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 ee673cb 8083c06 ee673cb ea0b2a0 ee673cb ea0b2a0 454e47c ee673cb 454e47c ee673cb ea0b2a0 fba41e9 ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 454e47c ea0b2a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 |
"""
Comprehensive CodeSearchNet Analysis and Reporting Script.
This script provides a complete CodeSearchNet evaluation pipeline that includes:
1. Model evaluation results analysis
2. Peer model comparison analysis
3. Advanced visualizations and charts
4. Leaderboard comparison and ranking analysis
5. Comprehensive README report generation
6. Performance efficiency analysis
7. Language-specific performance analysis
Features:
- CodeSearchNet-style scoring (NDCG@10, MRR, Recall metrics)
- Comparison with peer code-specialized models
- Model efficiency metrics (performance per parameter)
- Interactive visualizations with Plotly and Matplotlib
- Professional charts for README integration
- Statistical analysis of results across programming languages
Usage:
python analyze.py --results-dir results/ --model-name my_model
distiller analyze --results-dir evaluation_results
"""
import json
import logging
import time
from pathlib import Path
from typing import Any
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from .config import directories
# Optional Plotly import with fallback
PLOTLY_AVAILABLE = True
try:
import plotly.graph_objects as go
except ImportError:
PLOTLY_AVAILABLE = False
# Set plotting style
try:
plt.style.use("seaborn-v0_8")
except OSError:
plt.style.use("seaborn") # Fallback for older matplotlib versions
sns.set_palette("husl")
# =============================================================================
# CONFIGURATION
# =============================================================================
# Constants
MIN_SCORES_FOR_STATS = 2
HIGH_PERFORMANCE_THRESHOLD = 0.3
MEDIUM_PERFORMANCE_THRESHOLD = 0.2
# Model Configuration
MODEL_NAME = "code_model2vec_analysis" # Generic name for multi-model analysis
ORIGINAL_MODEL_NAME = "Alibaba-NLP/gte-Qwen2-7B-instruct"
OUTPUT_DIR = Path("analysis_results")
IMAGES_DIR = Path("analysis_charts")
REPORT_FILE = Path("REPORT.md") # Changed from README.md
# Local directories for results - using standardized directories from config
DEFAULT_EVALUATION_DIR = directories.evaluation_results
DEFAULT_BENCHMARK_DIR = directories.benchmark_results
# CodeSearchNet Languages
CODE_LANGUAGES = ["python", "javascript", "java", "php", "ruby", "go"]
# Model name mapping from the default models in evaluate.py and benchmark.py
MODEL_NAME_MAPPING = {
# File names to display names and HuggingFace links
"all-MiniLM-L6-v2": {
"name": "sentence-transformers/all-MiniLM-L6-v2",
"link": "https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
},
"all-mpnet-base-v2": {
"name": "sentence-transformers/all-mpnet-base-v2",
"link": "https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
},
"paraphrase-MiniLM-L6-v2": {
"name": "sentence-transformers/paraphrase-MiniLM-L6-v2",
"link": "https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2",
},
"codebert-base": {"name": "microsoft/codebert-base", "link": "https://huggingface.co/microsoft/codebert-base"},
"graphcodebert-base": {
"name": "microsoft/graphcodebert-base",
"link": "https://huggingface.co/microsoft/graphcodebert-base",
},
"CodeBERTa-small-v1": {
"name": "huggingface/CodeBERTa-small-v1",
"link": "https://huggingface.co/huggingface/CodeBERTa-small-v1",
},
"all-MiniLM-L12-v2": {
"name": "sentence-transformers/all-MiniLM-L12-v2",
"link": "https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2",
},
"potion-base-8M": {"name": "minishlab/potion-base-8M", "link": "https://huggingface.co/minishlab/potion-base-8M"},
"potion-retrieval-32M": {
"name": "minishlab/potion-retrieval-32M",
"link": "https://huggingface.co/minishlab/potion-retrieval-32M",
},
"codet5-base": {"name": "Salesforce/codet5-base", "link": "https://huggingface.co/Salesforce/codet5-base"},
"gte-Qwen2-1.5B-instruct": {
"name": "Alibaba-NLP/gte-Qwen2-1.5B-instruct",
"link": "https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct",
},
"bge-m3": {"name": "BAAI/bge-m3", "link": "https://huggingface.co/BAAI/bge-m3"},
"jina-embeddings-v3": {
"name": "jinaai/jina-embeddings-v3",
"link": "https://huggingface.co/jinaai/jina-embeddings-v3",
},
"nomic-embed-text-v2-moe": {
"name": "nomic-ai/nomic-embed-text-v2-moe",
"link": "https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe",
},
"Qodo-Embed-1-1.5B": {"name": "Qodo/Qodo-Embed-1-1.5B", "link": "https://huggingface.co/Qodo/Qodo-Embed-1-1.5B"},
"Reason-ModernColBERT": {
"name": "lightonai/Reason-ModernColBERT",
"link": "https://huggingface.co/lightonai/Reason-ModernColBERT",
},
"Linq-Embed-Mistral": {
"name": "Linq-AI-Research/Linq-Embed-Mistral",
"link": "https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral",
},
"bge-code-v1": {"name": "BAAI/bge-code-v1", "link": "https://huggingface.co/BAAI/bge-code-v1"},
"SFR-Embedding-Code-2B_R": {
"name": "Salesforce/SFR-Embedding-Code-2B_R",
"link": "https://huggingface.co/Salesforce/SFR-Embedding-Code-2B_R",
},
}
# Reverse mapping for lookups - using just the names
DISPLAY_NAME_TO_FILE = {v["name"]: k for k, v in MODEL_NAME_MAPPING.items()}
# Peer models for comparison (code-specialized models)
PEER_MODELS = {
"sentence-transformers/all-MiniLM-L6-v2": {
"overall_ndcg": 0.25,
"type": "General",
"link": "https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
},
"microsoft/codebert-base": {
"overall_ndcg": 0.32,
"type": "Code-Specific",
"link": "https://huggingface.co/microsoft/codebert-base",
},
"microsoft/graphcodebert-base": {
"overall_ndcg": 0.35,
"type": "Code-Specific",
"link": "https://huggingface.co/microsoft/graphcodebert-base",
},
"huggingface/CodeBERTa-small-v1": {
"overall_ndcg": 0.28,
"type": "Code-Specific",
"link": "https://huggingface.co/huggingface/CodeBERTa-small-v1",
},
"sentence-transformers/all-mpnet-base-v2": {
"overall_ndcg": 0.27,
"type": "General",
"link": "https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
},
}
# Model specifications for efficiency analysis
MODEL_SPECS = {
"sentence-transformers/all-MiniLM-L6-v2": {
"parameters": 22.7,
"size_mb": 90,
"link": "https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
},
"microsoft/codebert-base": {
"parameters": 125.0,
"size_mb": 500,
"link": "https://huggingface.co/microsoft/codebert-base",
},
"microsoft/graphcodebert-base": {
"parameters": 125.0,
"size_mb": 500,
"link": "https://huggingface.co/microsoft/graphcodebert-base",
},
"huggingface/CodeBERTa-small-v1": {
"parameters": 84.0,
"size_mb": 340,
"link": "https://huggingface.co/huggingface/CodeBERTa-small-v1",
},
"sentence-transformers/all-mpnet-base-v2": {
"parameters": 109.0,
"size_mb": 440,
"link": "https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
},
"Alibaba-NLP/gte-Qwen2-1.5B-instruct": {
"parameters": 1500.0,
"size_mb": 3000,
"link": "https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct",
},
}
# Distilled model specifications
DISTILLED_MODEL_SPECS = {
"parameters": 39.0, # Model2Vec parameters
"size_mb": 149.0, # Actual model size
"dimensions": 256, # Model2Vec dimensions
"original_dimensions": 3584,
"distillation_method": "Model2Vec",
"training_dataset": "CodeSearchNet",
}
# =============================================================================
# UTILITY FUNCTIONS
# =============================================================================
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
def setup_directories(base_path: Path | None = None) -> tuple[Path, Path, Path]:
"""Create necessary directories and return their paths."""
if base_path:
output_dir = base_path / "analysis_results"
images_dir = base_path / "analysis_results" / "charts"
reports_dir = base_path / "analysis_results" / "reports"
else:
output_dir = Path() # Use current directory
images_dir = IMAGES_DIR # Use analysis_charts
reports_dir = Path() # Use current directory for reports
# Only create directories that we actually use
images_dir.mkdir(parents=True, exist_ok=True)
return output_dir, images_dir, reports_dir
def extract_model_name_from_filename(filename: str) -> str:
"""Extract and map model name from filename."""
# Remove prefixes and extensions
name = filename.replace("codesearchnet_eval_", "").replace("benchmark_", "").replace(".json", "")
# Check if it's in our mapping
if name in MODEL_NAME_MAPPING:
return MODEL_NAME_MAPPING[name]["name"]
# Try to find partial matches
for file_key, model_info in MODEL_NAME_MAPPING.items():
if file_key in name or name in file_key:
return model_info["name"]
# If no mapping found, return the cleaned name
return name
def get_model_link(model_name: str) -> str:
"""Get HuggingFace link for a model."""
# First try direct lookup by file key
for model_info in MODEL_NAME_MAPPING.values():
if model_info["name"] == model_name:
return model_info["link"]
# Try partial matches
for model_info in MODEL_NAME_MAPPING.values():
if model_name.lower() in model_info["name"].lower() or model_info["name"].lower() in model_name.lower():
return model_info["link"]
# If no mapping found, construct link from model name
if "/" in model_name:
return f"https://huggingface.co/{model_name}"
return ""
def format_model_with_link(model_name: str) -> str:
"""Format model name with markdown link."""
link = get_model_link(model_name)
if link:
return f"[{model_name}]({link})"
return model_name
def get_teacher_model_info(model_display_name: str) -> tuple[str, str]:
"""Extract teacher model name and link from distilled model display name."""
# Mapping from model display patterns to teacher models
teacher_mapping = {
"all_MiniLM_L6_v2": (
"sentence-transformers/all-MiniLM-L6-v2",
"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
),
"all_mpnet_base_v2": (
"sentence-transformers/all-mpnet-base-v2",
"https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
),
"paraphrase_MiniLM_L6_v2": (
"sentence-transformers/paraphrase-MiniLM-L6-v2",
"https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2",
),
"codebert_base": ("microsoft/codebert-base", "https://huggingface.co/microsoft/codebert-base"),
"graphcodebert_base": ("microsoft/graphcodebert-base", "https://huggingface.co/microsoft/graphcodebert-base"),
"gte_Qwen2_1.5B_instruct": (
"Alibaba-NLP/gte-Qwen2-1.5B-instruct",
"https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct",
),
"bge_m3": ("BAAI/bge-m3", "https://huggingface.co/BAAI/bge-m3"),
"jina_embeddings_v2_base_code": (
"jina-embeddings-v2-base-code",
"https://huggingface.co/jina-embeddings-v2-base-code",
),
"jina_embeddings_v3": ("jinaai/jina-embeddings-v3", "https://huggingface.co/jinaai/jina-embeddings-v3"),
"nomic_embed_text_v2_moe": (
"nomic-ai/nomic-embed-text-v2-moe",
"https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe",
),
"Qodo_Embed_1_1.5B": ("Qodo/Qodo-Embed-1-1.5B", "https://huggingface.co/Qodo/Qodo-Embed-1-1.5B"),
"Reason_ModernColBERT": (
"lightonai/Reason-ModernColBERT",
"https://huggingface.co/lightonai/Reason-ModernColBERT",
),
"Linq_Embed_Mistral": (
"Linq-AI-Research/Linq-Embed-Mistral",
"https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral",
),
"bge_code_v1": ("BAAI/bge-code-v1", "https://huggingface.co/BAAI/bge-code-v1"),
"SFR_Embedding_Code_2B_R": (
"Salesforce/SFR-Embedding-Code-2B_R",
"https://huggingface.co/Salesforce/SFR-Embedding-Code-2B_R",
),
}
for pattern, (teacher_name, teacher_link) in teacher_mapping.items():
if pattern in model_display_name:
return teacher_name, teacher_link
return "Unknown", ""
class CodeSearchNetAnalyzer:
"""Analyzer for CodeSearchNet evaluation results and performance benchmarks."""
def __init__(
self,
results_dir: str | None = None,
benchmark_dir: str | None = None,
images_dir: Path | None = None,
) -> None:
"""Initialize analyzer with results directories."""
self.results_dir = Path(results_dir) if results_dir else Path(DEFAULT_EVALUATION_DIR)
self.benchmark_dir = Path(benchmark_dir) if benchmark_dir else Path(DEFAULT_BENCHMARK_DIR)
self.images_dir = images_dir or IMAGES_DIR
self.results: list[dict[str, Any]] = []
self.benchmark_results: list[dict[str, Any]] = []
self.comparison_df: pd.DataFrame | None = None
self.benchmark_df: pd.DataFrame | None = None
self.model_specs: dict[str, dict[str, Any]] = {} # Store actual model specifications
def load_benchmark_results(self) -> None:
"""Load benchmark results from comprehensive evaluation files."""
logger.info("π Loading benchmark results from comprehensive evaluations...")
if not self.results_dir.exists():
logger.warning(f"Evaluation directory not found: {self.results_dir}")
return
logger.info(f"π Searching for comprehensive evaluation files in: {self.results_dir}")
# Look for both new comprehensive format and legacy formats
comprehensive_files = list(self.results_dir.glob("comprehensive_eval_*.json"))
legacy_files = list(self.results_dir.glob("codesearchnet_eval_*.json"))
all_files = comprehensive_files + legacy_files
logger.info(
f"π Found {len(all_files)} evaluation files ({len(comprehensive_files)} comprehensive, {len(legacy_files)} legacy)"
)
for eval_file_path in all_files:
try:
logger.info(f"π Loading: {eval_file_path.name}")
with eval_file_path.open() as f:
data = json.load(f)
if data is not None:
if not isinstance(data, dict):
logger.warning(f"β οΈ Skipping {eval_file_path.name} (not a dict)")
continue
# Extract benchmark data if available
benchmark_data = self._extract_benchmark_data(data, eval_file_path)
if benchmark_data:
self.benchmark_results.append(benchmark_data)
logger.info(f"β
Successfully loaded benchmark data: {benchmark_data['model_name']}")
except (json.JSONDecodeError, KeyError) as e:
logger.warning(f"β Failed to load {eval_file_path}: {e}")
logger.info(f"π Total benchmark results loaded: {len(self.benchmark_results)}")
if self.benchmark_results:
model_names = [r.get("model_name", "Unknown") for r in self.benchmark_results]
logger.info(f"π― Benchmark models found: {', '.join(model_names)}")
self._create_benchmark_dataframe()
def _extract_benchmark_data(self, data: dict, file_path: Path) -> dict[str, Any] | None:
"""Extract benchmark data from comprehensive evaluation results."""
# Check if this evaluation contains benchmark data
if data.get("benchmark_skipped", False):
return None
# Check for benchmark fields
if not any(key in data for key in ["size_metrics", "speed_benchmarks", "memory_benchmarks", "cpu_vs_gpu"]):
return None
# Extract model name
original_name = data.get("model_name") or "Unknown"
mapped_name = extract_model_name_from_filename(
file_path.stem.replace("comprehensive_eval_", "").replace("codesearchnet_eval_", "")
)
# Create benchmark result structure
result: dict[str, Any] = {
"model_name": mapped_name,
"original_model_name": original_name,
"size_metrics": data.get("size_metrics", {}),
"speed_benchmarks": data.get("speed_benchmarks", {}),
"memory_benchmarks": data.get("memory_benchmarks", {}),
"cpu_vs_gpu": data.get("cpu_vs_gpu", {}),
}
return result
def _create_benchmark_dataframe(self) -> None:
"""Create benchmark comparison DataFrame from results."""
if not self.benchmark_results:
return
benchmark_data = []
for result in self.benchmark_results:
model_name = result.get("model_name", "Unknown")
size_metrics = result.get("size_metrics", {})
speed_benchmarks = result.get("speed_benchmarks", {})
memory_benchmarks = result.get("memory_benchmarks", {})
cpu_vs_gpu = result.get("cpu_vs_gpu", {})
# Extract key metrics
row = {
"Model": model_name,
"Disk_Size_MB": size_metrics.get("disk_size_mb", 0),
"Parameters_M": size_metrics.get("parameters_millions", 0),
"Embedding_Dim": size_metrics.get("embedding_dim", 0),
"RAM_Usage_MB": size_metrics.get("ram_usage_mb", 0),
"GPU_Memory_MB": size_metrics.get("gpu_memory_mb", 0),
}
# Speed metrics (medium texts, batch 32)
if "medium" in speed_benchmarks and "batch_32" in speed_benchmarks["medium"]:
batch_32 = speed_benchmarks["medium"]["batch_32"]
row.update(
{
"Throughput_TextsPerSec": batch_32.get("texts_per_second", 0),
"Latency_MsPerText": batch_32.get("time_per_text_ms", 0),
"TokenSpeed_TokensPerSec": batch_32.get("tokens_per_second", 0),
}
)
# Memory scaling (batch 32)
if "batch_32" in memory_benchmarks:
batch_32_mem = memory_benchmarks["batch_32"]
if not batch_32_mem.get("oom", False) and "error" not in batch_32_mem:
row.update(
{
"Memory_Used_MB": batch_32_mem.get("memory_used_mb", 0),
"Memory_Per_Text_MB": batch_32_mem.get("memory_per_text_mb", 0),
}
)
# CPU vs GPU comparison
for device, metrics in cpu_vs_gpu.items():
if isinstance(metrics, dict) and "error" not in metrics:
device_key = f"{device.upper()}_TextsPerSec"
row[device_key] = metrics.get("texts_per_second", 0)
benchmark_data.append(row)
self.benchmark_df = pd.DataFrame(benchmark_data)
def analyze_our_model_specifications(self) -> None:
"""Analyze actual model specifications for our distilled models."""
logger.info("π Analyzing model specifications for our distilled models...")
# Look for our models in the code_model2vec/final directory
final_models_dir = Path("code_model2vec/final")
if not final_models_dir.exists():
logger.warning(f"Final models directory not found: {final_models_dir}")
return
# Find all our model directories
our_model_dirs = [
model_dir
for model_dir in final_models_dir.iterdir()
if model_dir.is_dir() and "code_model2vec" in model_dir.name
]
logger.info(f"π Found {len(our_model_dirs)} distilled model directories")
for model_dir in our_model_dirs:
model_name = model_dir.name
logger.info(f"π Analyzing model: {model_name}")
try:
# Try to load the model and get specifications
from distiller.model2vec import StaticModel
model = StaticModel.from_pretrained(str(model_dir))
# Get model specifications
vocab_size = len(model.tokens)
embedding_dim = model.dim
total_params = vocab_size * embedding_dim
# Get file size information
model_file = model_dir / "model.safetensors"
disk_size_mb: float = 0.0
if model_file.exists():
disk_size_mb = float(model_file.stat().st_size / (1024 * 1024)) # Convert to MB
# Store specifications
self.model_specs[model_name] = {
"vocabulary_size": vocab_size,
"embedding_dimensions": embedding_dim,
"total_parameters": total_params,
"parameters_millions": total_params / 1_000_000,
"disk_size_mb": disk_size_mb,
"model_path": str(model_dir),
"analysis_successful": True,
}
logger.info(
f"β
{model_name}: {vocab_size:,} vocab, {embedding_dim} dims, {total_params:,} params ({total_params / 1_000_000:.1f}M)"
)
except Exception as e:
logger.warning(f"β Failed to analyze {model_name}: {e}")
self.model_specs[model_name] = {
"analysis_successful": False,
"error": str(e),
"model_path": str(model_dir),
}
logger.info(
f"π Successfully analyzed {len([s for s in self.model_specs.values() if s.get('analysis_successful', False)])} models"
)
def load_results(self) -> None:
"""Load evaluation results from local directory."""
logger.info("π Loading evaluation results...")
if not self.results_dir.exists():
logger.warning(f"Evaluation directory not found: {self.results_dir}")
return
logger.info(f"π Searching for evaluation files in: {self.results_dir}")
# Look for both new comprehensive format and legacy formats
comprehensive_files = list(self.results_dir.glob("comprehensive_eval_*.json"))
legacy_files = list(self.results_dir.glob("codesearchnet_eval_*.json"))
all_files = comprehensive_files + legacy_files
logger.info(
f"π Found {len(all_files)} evaluation files ({len(comprehensive_files)} comprehensive, {len(legacy_files)} legacy)"
)
for json_file in all_files:
try:
logger.info(f"π Loading: {json_file.name}")
with json_file.open() as f:
data = json.load(f)
if data is not None:
if not isinstance(data, dict):
logger.warning(f"β οΈ Skipping {json_file.name} (not a dict)")
continue
# Normalize data format for analysis
normalized_data = self._normalize_evaluation_data(data, json_file)
self.results.append(normalized_data)
logger.info(f"β
Successfully loaded: {normalized_data['model_name']}")
except (json.JSONDecodeError, KeyError) as e:
logger.warning(f"β Failed to load {json_file}: {e}")
logger.info(f"π Total loaded: {len(self.results)} model results")
if self.results:
model_names = [r.get("model_name", "Unknown") for r in self.results]
logger.info(f"π― Models found: {', '.join(model_names)}")
self._create_comparison_dataframe()
# Also load benchmark results
self.load_benchmark_results()
# Analyze actual model specifications for our models
self.analyze_our_model_specifications()
def _normalize_evaluation_data(self, data: dict, file_path: Path) -> dict[str, Any]:
"""Normalize evaluation data to consistent format for analysis."""
# Extract model name
original_name = data.get("model_name", "Unknown")
file_stem = file_path.stem.replace("comprehensive_eval_", "").replace("codesearchnet_eval_", "")
mapped_name = extract_model_name_from_filename(file_stem)
# Handle comprehensive format (new)
if "codesearch_overall" in data and "codesearch_languages" in data:
result = {
"model_name": mapped_name,
"original_model_name": original_name,
"overall": data.get("codesearch_overall", {}),
"languages": data.get("codesearch_languages", {}),
}
# Handle legacy format (old codesearchnet_eval files)
else:
result = {
"model_name": mapped_name,
"original_model_name": original_name,
"overall": data.get("overall", {}),
"languages": data.get("languages", {}),
}
return result
def _create_comparison_dataframe(self) -> None:
"""Create comparison DataFrame from results."""
if not self.results:
return
comparison_data = []
for result in self.results:
overall = result.get("overall", {})
row = {
"Model": result["model_name"],
"MRR": overall.get("mrr", 0),
"NDCG@1": overall.get("ndcg@1", 0),
"NDCG@5": overall.get("ndcg@5", 0),
"NDCG@10": overall.get("ndcg@10", 0),
"Recall@1": overall.get("recall@1", 0),
"Recall@5": overall.get("recall@5", 0),
"Recall@10": overall.get("recall@10", 0),
"Mean_Rank": overall.get("mean_rank", 0),
"Median_Rank": overall.get("median_rank", 0),
}
comparison_data.append(row)
self.comparison_df = pd.DataFrame(comparison_data)
if not self.comparison_df.empty:
self.comparison_df = self.comparison_df.sort_values("NDCG@10", ascending=False)
def print_summary(self) -> None:
"""Print summary of results."""
if not self.results:
logger.warning("No results to summarize")
return
print(f"\n{'=' * 60}")
print("CodeSearchNet Evaluation Summary")
print(f"{'=' * 60}")
print(f"Total models evaluated: {len(self.results)}")
if self.comparison_df is not None and not self.comparison_df.empty:
print(f"\nTop performing model: {self.comparison_df.iloc[0]['Model']}")
print(f"Best NDCG@10: {self.comparison_df.iloc[0]['NDCG@10']:.4f}")
print(f"Best MRR: {self.comparison_df['MRR'].max():.4f}")
print(f"\nEvaluated languages: {', '.join(CODE_LANGUAGES)}")
# Also print benchmark summary if available
if self.benchmark_results:
print(f"\n{'=' * 60}")
print("Performance Benchmark Summary")
print(f"{'=' * 60}")
print(f"Total models benchmarked: {len(self.benchmark_results)}")
if self.benchmark_df is not None and not self.benchmark_df.empty:
# Safely get fastest and smallest models
fastest_model = "N/A"
smallest_model = "N/A"
if "Throughput_TextsPerSec" in self.benchmark_df.columns:
fastest_idx = self.benchmark_df["Throughput_TextsPerSec"].idxmax()
fastest_model = str(self.benchmark_df.loc[fastest_idx, "Model"])
if "Disk_Size_MB" in self.benchmark_df.columns:
smallest_idx = self.benchmark_df["Disk_Size_MB"].idxmin()
smallest_model = str(self.benchmark_df.loc[smallest_idx, "Model"])
print(f"\nFastest model: {fastest_model}")
print(f"Smallest model: {smallest_model}")
def analyze_language_performance(self) -> None:
"""Analyze performance across programming languages."""
if not self.results:
return
print(f"\n{'=' * 60}")
print("Language-Specific Performance Analysis")
print(f"{'=' * 60}")
for result in self.results:
model_name = result["model_name"]
print(f"\nModel: {model_name}")
print("-" * 40)
languages = result.get("languages", {})
lang_data = []
for lang, lang_results in languages.items():
metrics = lang_results.get("metrics", {})
lang_data.append(
{
"Language": lang,
"NDCG@10": metrics.get("ndcg@10", 0),
"MRR": metrics.get("mrr", 0),
"Recall@5": metrics.get("recall@5", 0),
"Queries": lang_results.get("num_queries", 0),
}
)
if lang_data:
lang_df = pd.DataFrame(lang_data)
print(lang_df.to_string(index=False, float_format="%.4f"))
print(f"\nBest language: {lang_df.loc[lang_df['NDCG@10'].idxmax(), 'Language']}")
print(f"Average NDCG@10: {lang_df['NDCG@10'].mean():.4f}")
print(f"Average queries per language: {lang_df['Queries'].mean():.0f}")
def analyze_benchmark_performance(self) -> None:
"""Analyze and print benchmark performance summary."""
if not self.benchmark_results:
logger.warning("No benchmark results to analyze")
return
print(f"\n{'=' * 60}")
print("Performance Benchmark Analysis")
print(f"{'=' * 60}")
for result in self.benchmark_results:
model_name = result.get("model_name", "Unknown")
print(f"\nModel: {model_name}")
print("-" * 40)
# Size metrics
size_metrics = result.get("size_metrics", {})
if size_metrics:
print("π Model Size:")
print(f" Disk Size: {size_metrics.get('disk_size_mb', 0):.1f} MB")
if "parameters_millions" in size_metrics:
print(f" Parameters: {size_metrics['parameters_millions']:.1f}M")
if "embedding_dim" in size_metrics:
print(f" Embedding Dimension: {size_metrics['embedding_dim']}")
# Speed metrics
speed_benchmarks = result.get("speed_benchmarks", {})
if "medium" in speed_benchmarks and "batch_32" in speed_benchmarks["medium"]:
batch_32 = speed_benchmarks["medium"]["batch_32"]
print("β‘ Performance (Batch 32, Medium Texts):")
print(f" Throughput: {batch_32.get('texts_per_second', 0):.1f} texts/sec")
print(f" Latency: {batch_32.get('time_per_text_ms', 0):.1f} ms/text")
print(f" Token Speed: {batch_32.get('tokens_per_second', 0):.0f} tokens/sec")
# CPU vs GPU
cpu_vs_gpu = result.get("cpu_vs_gpu", {})
if cpu_vs_gpu:
print("π₯οΈ CPU vs GPU:")
for device, metrics in cpu_vs_gpu.items():
if isinstance(metrics, dict) and "error" not in metrics:
print(f" {device.upper()}: {metrics.get('texts_per_second', 0):.1f} texts/sec")
# Memory efficiency
memory_benchmarks = result.get("memory_benchmarks", {})
if "batch_32" in memory_benchmarks:
batch_32_mem = memory_benchmarks["batch_32"]
if not batch_32_mem.get("oom", False) and "error" not in batch_32_mem:
print("πΎ Memory Usage (Batch 32):")
print(f" Total: {batch_32_mem.get('memory_used_mb', 0):.1f} MB")
print(f" Per Text: {batch_32_mem.get('memory_per_text_mb', 0):.2f} MB")
def create_performance_radar_chart(self, model_name: str, language_scores: dict[str, float]) -> str:
"""Create radar chart showing performance across languages."""
if not PLOTLY_AVAILABLE:
logger.warning("Plotly not available, skipping radar chart")
return ""
languages = list(language_scores.keys())
scores = list(language_scores.values())
if not languages:
return ""
# Close the radar chart
languages_closed = [*languages, languages[0]]
scores_closed = [*scores, scores[0]]
fig = go.Figure()
fig.add_trace(
go.Scatterpolar(
r=scores_closed,
theta=languages_closed,
fill="toself",
name=model_name,
line_color="rgb(67, 147, 195)",
fillcolor="rgba(67, 147, 195, 0.3)",
)
)
fig.update_layout(
polar={"radialaxis": {"visible": True, "range": [0, max(scores) * 1.1]}},
showlegend=True,
title=f"CodeSearchNet Performance by Language: {model_name}",
width=800,
height=600,
)
static_path = self.images_dir / "code_performance_radar.png"
try:
fig.write_image(str(static_path), width=800, height=600, scale=2)
return str(static_path)
except Exception as e:
logger.warning(f"Could not create static image: {e}")
return ""
def create_comparative_radar_chart(self, simplified_models: list, peer_models: list) -> str:
"""Create comparative radar chart between best distilled model and top peer models."""
if not PLOTLY_AVAILABLE:
logger.warning("Plotly not available, skipping comparative radar chart")
return ""
if not simplified_models:
return ""
# Get the best simplified model
best_simplified = max(simplified_models, key=lambda x: x.get("overall", {}).get("ndcg@10", 0))
# Get top 3 peer models by performance
peer_models_sorted = sorted(peer_models, key=lambda x: x.get("overall", {}).get("ndcg@10", 0), reverse=True)
top_peers = peer_models_sorted[:3]
models_to_compare = [best_simplified, *top_peers]
fig = go.Figure()
# Define colors for each model
colors = ["rgb(255, 99, 132)", "rgb(54, 162, 235)", "rgb(255, 205, 86)", "rgb(75, 192, 192)"]
# Collect all scores to determine the appropriate range
all_scores = []
for i, model_result in enumerate(models_to_compare):
model_name = model_result["model_name"]
languages = model_result.get("languages", {})
# Calculate language scores
language_scores = {}
for lang, lang_data in languages.items():
metrics = lang_data.get("metrics", {})
language_scores[lang.title()] = metrics.get("ndcg@10", 0)
if language_scores:
languages_list = list(language_scores.keys())
scores_list = list(language_scores.values())
all_scores.extend(scores_list) # Collect scores for range calculation
# Close the radar chart
languages_closed = [*languages_list, languages_list[0]]
scores_closed = [*scores_list, scores_list[0]]
# Determine line style - solid for best distilled, dash for peers
line_dash = "solid" if i == 0 else "dash"
line_width = 3 if i == 0 else 2
fig.add_trace(
go.Scatterpolar(
r=scores_closed,
theta=languages_closed,
fill="toself" if i == 0 else "none",
name=model_name,
line={"color": colors[i % len(colors)], "dash": line_dash, "width": line_width},
fillcolor=f"rgba{colors[i % len(colors)][3:-1]}, 0.2)" if i == 0 else None,
)
)
# Calculate dynamic range based on actual data
if all_scores:
max_score = max(all_scores)
# Set range to slightly above the maximum score with some padding
range_max = min(1.0, max_score * 1.1) # Cap at 1.0 since NDCG@10 max is 1.0
else:
range_max = 1.0 # Default fallback
fig.update_layout(
polar={"radialaxis": {"visible": True, "range": [0, range_max]}},
showlegend=True,
title="Model Comparison: Best Distilled vs Top Peer Models",
width=900,
height=700,
)
static_path = self.images_dir / "comparative_radar.png"
try:
fig.write_image(str(static_path), width=900, height=700, scale=2)
return str(static_path)
except Exception as e:
logger.warning(f"Could not create comparative radar chart: {e}")
return ""
def create_individual_radar_charts(self, simplified_models: list) -> dict[str, str]:
"""Create individual radar charts for all simplified models."""
radar_charts = {}
for result in simplified_models:
model_name = result["model_name"]
model_languages = result.get("languages", {})
model_language_scores = {}
for lang, lang_data in model_languages.items():
metrics = lang_data.get("metrics", {})
model_language_scores[lang.title()] = metrics.get("ndcg@10", 0)
if model_language_scores:
# Create unique filename for each model
safe_model_name = "".join(c for c in model_name if c.isalnum() or c in ("-", "_")).rstrip()
radar_chart_path = self.create_performance_radar_chart_individual(
model_name, model_language_scores, safe_model_name
)
if radar_chart_path:
radar_charts[model_name] = radar_chart_path
return radar_charts
def create_performance_radar_chart_individual(
self, model_name: str, language_scores: dict[str, float], filename_suffix: str
) -> str:
"""Create radar chart for individual model with unique filename."""
if not PLOTLY_AVAILABLE:
logger.warning("Plotly not available, skipping radar chart")
return ""
languages = list(language_scores.keys())
scores = list(language_scores.values())
if not languages:
return ""
# Close the radar chart
languages_closed = [*languages, languages[0]]
scores_closed = [*scores, scores[0]]
fig = go.Figure()
fig.add_trace(
go.Scatterpolar(
r=scores_closed,
theta=languages_closed,
fill="toself",
name=model_name,
line_color="rgb(67, 147, 195)",
fillcolor="rgba(67, 147, 195, 0.3)",
)
)
fig.update_layout(
polar={"radialaxis": {"visible": True, "range": [0, max(scores) * 1.1]}},
showlegend=True,
title=f"CodeSearchNet Performance by Language: {model_name}",
width=800,
height=600,
)
static_path = self.images_dir / f"radar_{filename_suffix}.png"
try:
fig.write_image(str(static_path), width=800, height=600, scale=2)
return str(static_path)
except Exception as e:
logger.warning(f"Could not create static image for {model_name}: {e}")
return ""
def plot_model_comparison(self, save_path: str | None = None) -> str:
"""Create comparison plots for models."""
if self.comparison_df is None or self.comparison_df.empty:
logger.warning("No comparison data available for plotting")
return ""
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
fig.suptitle("CodeSearchNet Model Comparison", fontsize=16, fontweight="bold")
# NDCG@10 comparison
axes[0, 0].barh(self.comparison_df["Model"], self.comparison_df["NDCG@10"])
axes[0, 0].set_title("NDCG@10 Comparison")
axes[0, 0].set_xlabel("NDCG@10")
# MRR comparison
axes[0, 1].barh(self.comparison_df["Model"], self.comparison_df["MRR"])
axes[0, 1].set_title("Mean Reciprocal Rank (MRR)")
axes[0, 1].set_xlabel("MRR")
# Recall@5 comparison
axes[1, 0].barh(self.comparison_df["Model"], self.comparison_df["Recall@5"])
axes[1, 0].set_title("Recall@5")
axes[1, 0].set_xlabel("Recall@5")
# Mean Rank comparison (lower is better)
axes[1, 1].barh(self.comparison_df["Model"], self.comparison_df["Mean_Rank"])
axes[1, 1].set_title("Mean Rank (lower is better)")
axes[1, 1].set_xlabel("Mean Rank")
plt.tight_layout()
output_path = save_path or str(self.images_dir / "model_comparison.png")
plt.savefig(output_path, dpi=300, bbox_inches="tight")
plt.close()
return output_path
def plot_language_heatmap(self, save_path: str | None = None) -> str:
"""Create a heatmap of performance across languages."""
if not self.results:
return ""
# Prepare data for heatmap
heatmap_data = []
for result in self.results:
model_name = result["model_name"]
languages = result.get("languages", {})
row = {"Model": model_name}
for lang in CODE_LANGUAGES:
if lang in languages:
metrics = languages[lang].get("metrics", {})
row[lang.title()] = metrics.get("ndcg@10", 0)
else:
row[lang.title()] = 0
heatmap_data.append(row)
if not heatmap_data:
return ""
df = pd.DataFrame(heatmap_data).set_index("Model")
plt.figure(figsize=(12, 8))
sns.heatmap(
df,
annot=True,
fmt=".3f",
cmap="RdYlBu_r",
center=0.2,
vmin=0,
vmax=df.to_numpy().max(),
cbar_kws={"label": "NDCG@10 Score"},
)
plt.title(
"CodeSearchNet Performance Heatmap by Language",
fontsize=16,
fontweight="bold",
)
plt.xlabel("Programming Language", fontsize=12)
plt.ylabel("Model", fontsize=12)
plt.tight_layout()
output_path = save_path or str(self.images_dir / "language_heatmap.png")
plt.savefig(output_path, dpi=300, bbox_inches="tight")
plt.close()
return output_path
def plot_benchmark_performance(self, save_path: str | None = None) -> str:
"""Create comprehensive benchmark performance plots."""
if not self.benchmark_results:
logger.warning("No benchmark data available for plotting")
return ""
fig, axes = plt.subplots(2, 3, figsize=(18, 12))
fig.suptitle("Performance Benchmark Analysis", fontsize=16, fontweight="bold")
# 1. Model Size Comparison
if self.benchmark_df is not None and "Disk_Size_MB" in self.benchmark_df.columns:
axes[0, 0].barh(self.benchmark_df["Model"], self.benchmark_df["Disk_Size_MB"])
axes[0, 0].set_title("Model Size (MB)")
axes[0, 0].set_xlabel("Size (MB)")
# 2. Inference Throughput
if self.benchmark_df is not None and "Throughput_TextsPerSec" in self.benchmark_df.columns:
axes[0, 1].barh(self.benchmark_df["Model"], self.benchmark_df["Throughput_TextsPerSec"])
axes[0, 1].set_title("Inference Throughput")
axes[0, 1].set_xlabel("Texts/Second")
# 3. Memory Usage
if self.benchmark_df is not None and "Memory_Used_MB" in self.benchmark_df.columns:
axes[0, 2].barh(self.benchmark_df["Model"], self.benchmark_df["Memory_Used_MB"])
axes[0, 2].set_title("Memory Usage (Batch 32)")
axes[0, 2].set_xlabel("Memory (MB)")
# 4. Latency Comparison
if self.benchmark_df is not None and "Latency_MsPerText" in self.benchmark_df.columns:
axes[1, 0].barh(self.benchmark_df["Model"], self.benchmark_df["Latency_MsPerText"])
axes[1, 0].set_title("Inference Latency")
axes[1, 0].set_xlabel("Milliseconds/Text")
# 5. CPU vs GPU Performance
if self.benchmark_df is not None:
cpu_col = "CPU_TextsPerSec"
gpu_col = "CUDA_TextsPerSec"
if cpu_col in self.benchmark_df.columns and gpu_col in self.benchmark_df.columns:
x = np.arange(len(self.benchmark_df))
width = 0.35
axes[1, 1].bar(x - width / 2, self.benchmark_df[cpu_col], width, label="CPU", alpha=0.7)
axes[1, 1].bar(x + width / 2, self.benchmark_df[gpu_col], width, label="GPU", alpha=0.7)
axes[1, 1].set_title("CPU vs GPU Performance")
axes[1, 1].set_ylabel("Texts/Second")
axes[1, 1].set_xticks(x)
axes[1, 1].set_xticklabels(self.benchmark_df["Model"], rotation=45, ha="right")
axes[1, 1].legend()
# 6. Parameter Efficiency
if (
self.benchmark_df is not None
and "Parameters_M" in self.benchmark_df.columns
and "Throughput_TextsPerSec" in self.benchmark_df.columns
):
# Efficiency = Throughput / Parameters (higher is better)
efficiency = self.benchmark_df["Throughput_TextsPerSec"] / (self.benchmark_df["Parameters_M"] + 1e-6)
axes[1, 2].barh(self.benchmark_df["Model"], efficiency)
axes[1, 2].set_title("Parameter Efficiency")
axes[1, 2].set_xlabel("Texts/Sec per Million Parameters")
plt.tight_layout()
output_path = save_path or str(self.images_dir / "benchmark_performance.png")
plt.savefig(output_path, dpi=300, bbox_inches="tight")
plt.close()
return output_path
def plot_batch_size_scaling(self, save_path: str | None = None) -> str:
"""Create batch size scaling analysis plot."""
if not self.benchmark_results:
return ""
plt.figure(figsize=(12, 8))
for result in self.benchmark_results:
model_name = result.get("model_name", "Unknown")
speed_benchmarks = result.get("speed_benchmarks", {})
# Extract batch size performance for medium texts
if "medium" in speed_benchmarks:
batch_sizes = []
throughputs = []
for batch_key, metrics in speed_benchmarks["medium"].items():
if batch_key.startswith("batch_"):
batch_size = int(batch_key.split("_")[1])
throughput = metrics.get("texts_per_second", 0)
batch_sizes.append(batch_size)
throughputs.append(throughput)
if batch_sizes:
plt.plot(batch_sizes, throughputs, marker="o", label=model_name, linewidth=2)
plt.xlabel("Batch Size", fontsize=12)
plt.ylabel("Throughput (Texts/Second)", fontsize=12)
plt.title("Batch Size Scaling Performance", fontsize=16, fontweight="bold")
plt.legend()
plt.grid(visible=True, alpha=0.3)
plt.xscale("log", base=2)
output_path = save_path or str(self.images_dir / "batch_size_scaling.png")
plt.savefig(output_path, dpi=300, bbox_inches="tight")
plt.close()
return output_path
def plot_memory_scaling(self, save_path: str | None = None) -> str:
"""Create memory scaling analysis plot."""
if not self.benchmark_results:
return ""
plt.figure(figsize=(12, 8))
for result in self.benchmark_results:
model_name = result.get("model_name", "Unknown")
memory_benchmarks = result.get("memory_benchmarks", {})
batch_sizes = []
memory_usage = []
for batch_key, metrics in memory_benchmarks.items():
if batch_key.startswith("batch_") and not metrics.get("oom", False) and "error" not in metrics:
batch_size = int(batch_key.split("_")[1])
memory_mb = metrics.get("memory_used_mb", 0)
batch_sizes.append(batch_size)
memory_usage.append(memory_mb)
if batch_sizes:
plt.plot(batch_sizes, memory_usage, marker="s", label=model_name, linewidth=2)
plt.xlabel("Batch Size", fontsize=12)
plt.ylabel("Memory Usage (MB)", fontsize=12)
plt.title("Memory Scaling by Batch Size", fontsize=16, fontweight="bold")
plt.legend()
plt.grid(visible=True, alpha=0.3)
plt.xscale("log", base=2)
output_path = save_path or str(self.images_dir / "memory_scaling.png")
plt.savefig(output_path, dpi=300, bbox_inches="tight")
plt.close()
return output_path
def create_peer_comparison_chart(self, model_name: str) -> str:
"""Create comparison chart using actual evaluation results."""
if self.comparison_df is None or self.comparison_df.empty:
logger.warning("No comparison data available for peer comparison chart")
return ""
# Use actual evaluation results instead of hardcoded scores
df_sorted = self.comparison_df.sort_values("NDCG@10", ascending=True)
plt.figure(figsize=(12, 8))
# Color models differently - highlight the user's model
colors = []
for model in df_sorted["Model"]:
if model_name.lower() in model.lower() or "gte_qwen2_m2v_code" in model.lower():
colors.append("red") # User's model
else:
colors.append("skyblue") # Peer models
bars = plt.barh(df_sorted["Model"], df_sorted["NDCG@10"], color=colors)
# Highlight current model with special formatting
for i, model in enumerate(df_sorted["Model"]):
if model_name.lower() in model.lower() or "gte_qwen2_m2v_code" in model.lower():
bars[i].set_alpha(0.8)
bars[i].set_edgecolor("black")
bars[i].set_linewidth(2)
plt.xlabel("NDCG@10 Score", fontsize=12)
plt.title(
"CodeSearchNet Model Comparison (Actual Results)",
fontsize=16,
fontweight="bold",
)
plt.grid(axis="x", alpha=0.3)
# Add score labels
for i, score in enumerate(df_sorted["NDCG@10"]):
plt.text(score + 0.005, i, f"{score:.3f}", va="center")
plt.tight_layout()
output_path = self.images_dir / "peer_comparison.png"
plt.savefig(output_path, dpi=300, bbox_inches="tight")
plt.close()
return str(output_path)
def create_efficiency_analysis(self, model_name: str) -> str:
"""Create efficiency analysis chart using actual evaluation results."""
if self.comparison_df is None or self.comparison_df.empty:
logger.warning("No comparison data available for efficiency analysis")
return ""
models = []
scores = []
params = []
is_user_model = []
# Process all evaluated models
for _, row in self.comparison_df.iterrows():
model_display_name = row["Model"]
current_model_score = row["NDCG@10"]
# Determine if this is the user's model
is_users = (
model_name.lower() in model_display_name.lower() or "gte_qwen2_m2v_code" in model_display_name.lower()
)
if is_users:
# User's distilled model
models.append(model_display_name)
# Safe conversion to float for pandas values
score_value = pd.to_numeric(current_model_score, errors="coerce")
scores.append(float(score_value) if not pd.isna(score_value) else 0.0)
# Safe conversion for DISTILLED_MODEL_SPECS parameters
param_value = DISTILLED_MODEL_SPECS.get("parameters", 39)
params.append(float(param_value) if isinstance(param_value, (int, float)) else 39.0)
is_user_model.append(True)
else:
# Find corresponding peer model specs
model_key = None
for peer_key in MODEL_SPECS:
peer_short_name = peer_key.split("/")[-1].lower()
if peer_short_name in model_display_name.lower():
model_key = peer_key
break
if model_key and model_key in MODEL_SPECS:
models.append(model_display_name.split("/")[-1]) # Short name
# Safe conversion to float for pandas values
score_value = pd.to_numeric(current_model_score, errors="coerce")
scores.append(float(score_value) if not pd.isna(score_value) else 0.0)
param_value = MODEL_SPECS[model_key].get("parameters", 100.0)
params.append(float(param_value) if isinstance(param_value, (int, float)) else 100.0)
is_user_model.append(False)
if not models:
logger.warning("No models with parameter specifications found")
return ""
plt.figure(figsize=(12, 8))
# Plot peer models
peer_models = [m for i, m in enumerate(models) if not is_user_model[i]]
peer_params = [p for i, p in enumerate(params) if not is_user_model[i]]
peer_scores = [s for i, s in enumerate(scores) if not is_user_model[i]]
if peer_models:
plt.scatter(
peer_params,
peer_scores,
s=100,
alpha=0.6,
label="Peer Models",
color="skyblue",
)
# Plot user's model
user_models = [m for i, m in enumerate(models) if is_user_model[i]]
user_params = [p for i, p in enumerate(params) if is_user_model[i]]
user_scores = [s for i, s in enumerate(scores) if is_user_model[i]]
if user_models:
plt.scatter(
user_params,
user_scores,
s=200,
color="red",
alpha=0.8,
label=f"{user_models[0]} (Distilled)",
marker="*",
)
# Add model labels
for i, (model, param, score) in enumerate(zip(models, params, scores, strict=False)):
if is_user_model[i]:
plt.annotate(
model,
(param, score),
xytext=(10, 10),
textcoords="offset points",
fontweight="bold",
color="red",
)
else:
plt.annotate(
model,
(param, score),
xytext=(5, 5),
textcoords="offset points",
fontsize=9,
)
plt.xlabel("Model Size (Million Parameters)", fontsize=12)
plt.ylabel("NDCG@10 Score", fontsize=12)
plt.title(
"Model Efficiency: Performance vs Size (Actual Results)",
fontsize=16,
fontweight="bold",
)
plt.legend()
plt.grid(visible=True, alpha=0.3)
plt.xscale("log")
plt.tight_layout()
output_path = self.images_dir / "efficiency_analysis.png"
plt.savefig(output_path, dpi=300, bbox_inches="tight")
plt.close()
return str(output_path)
def plot_model_specifications(self, save_path: str | None = None) -> str:
"""Create visualization of our model specifications."""
if not self.model_specs:
logger.warning("No model specifications available for plotting")
return ""
# Filter only successfully analyzed models
successful_specs = {k: v for k, v in self.model_specs.items() if v.get("analysis_successful", False)}
if not successful_specs:
logger.warning("No successfully analyzed models for plotting")
return ""
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
fig.suptitle("Our Distilled Models - Specifications Analysis", fontsize=16, fontweight="bold")
# Extract data
model_names = list(successful_specs.keys())
# Shorten model names for better display
display_names = [name.replace("code_model2vec_", "").replace("_", " ") for name in model_names]
vocab_sizes = [spec["vocabulary_size"] for spec in successful_specs.values()]
param_counts = [spec["parameters_millions"] for spec in successful_specs.values()]
embed_dims = [spec["embedding_dimensions"] for spec in successful_specs.values()]
disk_sizes = [spec["disk_size_mb"] for spec in successful_specs.values()]
# 1. Vocabulary Size Comparison
axes[0, 0].barh(display_names, vocab_sizes, color="skyblue")
axes[0, 0].set_title("Vocabulary Size")
axes[0, 0].set_xlabel("Number of Tokens")
for i, v in enumerate(vocab_sizes):
axes[0, 0].text(v + max(vocab_sizes) * 0.01, i, f"{v:,}", va="center", fontsize=9)
# 2. Parameter Count Comparison
axes[0, 1].barh(display_names, param_counts, color="lightgreen")
axes[0, 1].set_title("Model Parameters")
axes[0, 1].set_xlabel("Parameters (Millions)")
for i, v in enumerate(param_counts):
axes[0, 1].text(v + max(param_counts) * 0.01, i, f"{v:.1f}M", va="center", fontsize=9)
# 3. Embedding Dimensions
axes[1, 0].barh(display_names, embed_dims, color="lightsalmon")
axes[1, 0].set_title("Embedding Dimensions")
axes[1, 0].set_xlabel("Dimensions")
for i, v in enumerate(embed_dims):
axes[1, 0].text(v + max(embed_dims) * 0.01, i, f"{v}", va="center", fontsize=9)
# 4. Disk Size
axes[1, 1].barh(display_names, disk_sizes, color="plum")
axes[1, 1].set_title("Model Size on Disk")
axes[1, 1].set_xlabel("Size (MB)")
for i, v in enumerate(disk_sizes):
axes[1, 1].text(v + max(disk_sizes) * 0.01, i, f"{v:.1f}MB", va="center", fontsize=9)
plt.tight_layout()
output_path = save_path or str(self.images_dir / "model_specifications.png")
plt.savefig(output_path, dpi=300, bbox_inches="tight")
plt.close()
return output_path
def generate_comprehensive_report(self, model_name: str = "Simplified Distillation Models") -> str:
"""Generate comprehensive markdown report for all evaluated models."""
if not self.results:
logger.error("No results to analyze")
return ""
# Find all simplified distillation models
simplified_models = []
peer_models = []
for result in self.results:
result_model_name = result["model_name"]
if (
"code_model2vec" in result_model_name.lower()
or "distilled" in result_model_name.lower()
or "(ours)" in result_model_name.lower()
):
simplified_models.append(result)
else:
peer_models.append(result)
# Get the best performing simplified model for main analysis
if simplified_models:
main_result = max(simplified_models, key=lambda x: x.get("overall", {}).get("ndcg@10", 0))
main_model_name = main_result["model_name"]
else:
# Fallback to first result if no simplified models found
main_result = self.results[0]
main_model_name = main_result["model_name"]
overall = main_result.get("overall", {})
languages = main_result.get("languages", {})
# Calculate language scores for radar chart
language_scores = {}
for lang, lang_data in languages.items():
metrics = lang_data.get("metrics", {})
language_scores[lang.title()] = metrics.get("ndcg@10", 0)
# Create visualizations
logger.info("Generating visualizations...")
output_dir, images_dir, reports_dir = setup_directories()
self.create_performance_radar_chart(main_model_name, language_scores)
comparison_chart = self.plot_model_comparison()
heatmap_chart = self.plot_language_heatmap()
peer_chart = self.create_peer_comparison_chart(main_model_name)
efficiency_chart = self.create_efficiency_analysis(main_model_name)
model_specs_chart = self.plot_model_specifications()
# Generate individual radar charts for all simplified models
individual_radar_charts = self.create_individual_radar_charts(simplified_models)
# Create comparative radar chart (best distilled vs top peer models)
comparative_radar_chart = self.create_comparative_radar_chart(simplified_models, peer_models)
# Create benchmark visualizations
benchmark_chart = ""
batch_scaling_chart = ""
memory_scaling_chart = ""
if self.benchmark_results:
benchmark_chart = self.plot_benchmark_performance()
batch_scaling_chart = self.plot_batch_size_scaling()
memory_scaling_chart = self.plot_memory_scaling()
# Generate report
report = f"""# Code-Specialized Model2Vec Distillation Analysis
## π― Executive Summary
This report presents a comprehensive analysis of Model2Vec distillation experiments using different teacher models for code-specialized embedding generation.
### Evaluated Models Overview
**Simplified Distillation Models:** {len(simplified_models)}
**Peer Comparison Models:** {len(peer_models)}
**Total Models Analyzed:** {len(self.results)}
### Best Performing Simplified Model: {main_model_name}
**Overall CodeSearchNet Performance:**
- **NDCG@10**: {overall.get("ndcg@10", 0):.4f}
- **Mean Reciprocal Rank (MRR)**: {overall.get("mrr", 0):.4f}
- **Recall@5**: {overall.get("recall@5", 0):.4f}
- **Mean Rank**: {overall.get("mean_rank", 0):.1f}
## π Comprehensive Model Comparison
### All Simplified Distillation Models Performance
"""
# Add table of all simplified models
if simplified_models:
report += "| Model | Teacher | NDCG@10 | MRR | Recall@5 | Status |\n"
report += "|-------|---------|---------|-----|----------|--------|\n"
# Sort by performance
simplified_models_sorted = sorted(
simplified_models, key=lambda x: x.get("overall", {}).get("ndcg@10", 0), reverse=True
)
for rank, result in enumerate(simplified_models_sorted, 1):
model_display = result["model_name"]
overall_metrics = result.get("overall", {})
# Extract teacher model name from model name
teacher_name, teacher_link = get_teacher_model_info(model_display)
status = "π₯ Best" if rank == 1 else "π₯ 2nd" if rank == 2 else "π₯ 3rd" if rank == 3 else f"#{rank}"
# Use linked teacher name if available
teacher_display = f"[{teacher_name}]({teacher_link})" if teacher_link else teacher_name
report += f"| {model_display} | {teacher_display} | {overall_metrics.get('ndcg@10', 0):.4f} | {overall_metrics.get('mrr', 0):.4f} | {overall_metrics.get('recall@5', 0):.4f} | {status} |\n"
# Add model specifications section
if self.model_specs:
successful_specs = {k: v for k, v in self.model_specs.items() if v.get("analysis_successful", False)}
if successful_specs:
report += """
### π Model Specifications Analysis
Our distilled models exhibit consistent architectural characteristics across different teacher models:
| Model | Vocabulary Size | Parameters | Embedding Dim | Disk Size |
|-------|----------------|------------|---------------|-----------|
"""
# Sort models by performance for consistency
for result in simplified_models_sorted:
model_display = result["model_name"]
if model_display in successful_specs:
spec = successful_specs[model_display]
vocab_size = spec["vocabulary_size"]
params_m = spec["parameters_millions"]
embed_dim = spec["embedding_dimensions"]
disk_size = spec["disk_size_mb"]
report += f"| {model_display.replace('code_model2vec_', '')} | {vocab_size:,} | {params_m:.1f}M | {embed_dim} | {disk_size:.1f}MB |\n"
if model_specs_chart:
report += f"""

*Comprehensive analysis of our distilled models showing vocabulary size, parameter count, embedding dimensions, and storage requirements.*
#### Key Insights from Model Specifications:
"""
# Calculate some insights
vocab_sizes = [spec["vocabulary_size"] for spec in successful_specs.values()]
param_counts = [spec["parameters_millions"] for spec in successful_specs.values()]
embed_dims = [spec["embedding_dimensions"] for spec in successful_specs.values()]
disk_sizes = [spec["disk_size_mb"] for spec in successful_specs.values()]
if vocab_sizes:
avg_vocab = sum(vocab_sizes) / len(vocab_sizes)
avg_params = sum(param_counts) / len(param_counts)
avg_disk = sum(disk_sizes) / len(disk_sizes)
report += f"""
- **Vocabulary Consistency**: All models use vocabulary sizes ranging from {min(vocab_sizes):,} to {max(vocab_sizes):,} tokens (avg: {avg_vocab:,.0f})
- **Parameter Efficiency**: Models range from {min(param_counts):.1f}M to {max(param_counts):.1f}M parameters (avg: {avg_params:.1f}M)
- **Storage Efficiency**: Disk usage ranges from {min(disk_sizes):.1f}MB to {max(disk_sizes):.1f}MB (avg: {avg_disk:.1f}MB)
- **Embedding Dimensions**: Consistent {embed_dims[0]} dimensions across all models (optimized for efficiency)
"""
report += """
### Key Findings
"""
if simplified_models and len(simplified_models) > 1:
best_model = simplified_models_sorted[0]
worst_model = simplified_models_sorted[-1]
best_score = best_model.get("overall", {}).get("ndcg@10", 0)
worst_score = worst_model.get("overall", {}).get("ndcg@10", 0)
report += f"""
- **Best Teacher Model**: {best_model["model_name"]} (NDCG@10: {best_score:.4f})
- **Least Effective Teacher**: {worst_model["model_name"]} (NDCG@10: {worst_score:.4f})
- **Performance Range**: {((best_score - worst_score) / best_score * 100):.1f}% difference between best and worst
- **Average Performance**: {sum(r.get("overall", {}).get("ndcg@10", 0) for r in simplified_models) / len(simplified_models):.4f} NDCG@10
"""
# Add radar charts section
report += """
## π― Language Performance Radar Charts
### Best Model vs Peer Models Comparison
"""
if comparative_radar_chart:
report += f"\n\n"
report += "*Comparative view showing how the best simplified distillation model performs against top peer models across programming languages.*\n\n"
# Add individual radar charts for all simplified models (sorted by performance)
if individual_radar_charts:
report += "### Individual Model Performance by Language\n\n"
# Sort the radar charts by model performance (best to worst)
for result in simplified_models_sorted:
chart_model_name = result["model_name"]
if chart_model_name in individual_radar_charts:
chart_path = individual_radar_charts[chart_model_name]
# Extract teacher name for cleaner display
teacher_name, teacher_link = get_teacher_model_info(chart_model_name)
# Use linked teacher name if available
teacher_display = f"[{teacher_name}]({teacher_link})" if teacher_link else teacher_name
# Get performance for display
overall_metrics = result.get("overall", {})
ndcg_score = overall_metrics.get("ndcg@10", 0)
report += f"#### {chart_model_name} (Teacher: {teacher_display}) - NDCG@10: {ndcg_score:.4f}\n\n"
report += f"\n\n"
report += f"""
## π Peer Model Comparison

*Comparison with established code-specialized embedding models using actual evaluation results.*
### Complete Model Ranking
"""
# Add comprehensive ranking table
if self.comparison_df is not None and len(self.comparison_df) > 0:
report += "| Rank | Model | Type | NDCG@10 | MRR | Recall@5 |\n"
report += "|------|-------|------|---------|-----|----------|\n"
for rank in range(len(self.comparison_df)):
row_data = self.comparison_df.iloc[rank]
model_name_display = str(row_data["Model"])
# Determine model type
if (
"code_model2vec" in model_name_display.lower()
or "distilled" in model_name_display.lower()
or "(ours)" in model_name_display.lower()
):
# Check if it's a fine-tuned model
if "fine_tuned" in model_name_display.lower():
model_type = "**π Fine-tuned Distillation**"
else:
model_type = "**π₯ Simplified Distillation**"
elif any(code_term in model_name_display.lower() for code_term in ["codebert", "graphcode", "codet5"]):
model_type = "Code-Specific"
elif "potion" in model_name_display.lower():
model_type = "Model2Vec"
else:
model_type = "General"
report += f"| {rank + 1} | {model_name_display} | {model_type} | {row_data['NDCG@10']:.4f} | {row_data['MRR']:.4f} | {row_data['Recall@5']:.4f} |\n"
report += f"""
## π Performance Analysis
### Multi-Model Comparison Charts

*Comprehensive comparison across all evaluation metrics.*
### Language Performance Analysis

*Performance heatmap showing how different models perform across programming languages.*
### Efficiency Analysis

*Performance vs model size analysis showing the efficiency benefits of distillation.*
"""
# Add benchmark analysis if available
if self.benchmark_results:
report += f"""
## β‘ Operational Performance Analysis

*Comprehensive performance benchmarking across multiple operational metrics.*
### Performance Scaling Analysis

*How performance scales with different batch sizes for optimal throughput.*

*Memory usage patterns across different batch sizes.*
"""
# Add detailed language analysis
report += """
## π Language-Specific Analysis
### Performance by Programming Language
"""
if language_scores:
report += "| Language | Best Model Performance | Average Performance | Language Difficulty |\n"
report += "|----------|------------------------|--------------------|--------------------|\n"
for lang in sorted(language_scores.keys()):
# Find best performance for this language across all models
lang_performances = []
for result in self.results:
lang_data = result.get("languages", {}).get(lang.lower(), {})
if lang_data:
lang_performances.append(lang_data.get("metrics", {}).get("ndcg@10", 0))
if lang_performances:
best_lang_perf = max(lang_performances)
avg_lang_perf = sum(lang_performances) / len(lang_performances)
difficulty = "Easy" if avg_lang_perf > 0.3 else "Medium" if avg_lang_perf > 0.2 else "Hard"
report += f"| {lang} | {best_lang_perf:.4f} | {avg_lang_perf:.4f} | {difficulty} |\n"
report += """
## π― Conclusions and Recommendations
### Teacher Model Analysis
Based on the evaluation results across all simplified distillation models:
"""
if simplified_models and len(simplified_models) > 1:
# Analyze which teacher models work best
teacher_performance = {}
for result in simplified_models:
model_name = result["model_name"]
score = result.get("overall", {}).get("ndcg@10", 0)
teacher_name, teacher_link = get_teacher_model_info(model_name)
teacher_performance[teacher_name] = score
if teacher_performance:
best_teacher = max(teacher_performance.items(), key=lambda x: x[1])
worst_teacher = min(teacher_performance.items(), key=lambda x: x[1])
report += f"""
1. **Best Teacher Model**: {best_teacher[0]} (NDCG@10: {best_teacher[1]:.4f})
2. **Least Effective Teacher**: {worst_teacher[0]} (NDCG@10: {worst_teacher[1]:.4f})
3. **Teacher Model Impact**: Choice of teacher model affects performance by {((best_teacher[1] - worst_teacher[1]) / best_teacher[1] * 100):.1f}%
### Recommendations
- **For Production**: Use {best_teacher[0]} as teacher model for best performance
- **For Efficiency**: Model2Vec distillation provides significant size reduction with competitive performance
- **For Code Tasks**: Specialized models consistently outperform general-purpose models
"""
report += f"""
## π Methodology
### Evaluation Protocol
- **Dataset**: CodeSearchNet test sets for 6 programming languages
- **Metrics**: NDCG@k, MRR, Recall@k following CodeSearchNet methodology
- **Query Format**: Natural language documentation strings
- **Corpus Format**: Function code strings
- **Evaluation**: Retrieval of correct code for each documentation query
### Teacher Models Tested
- [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) (proven baseline)
- [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) (general purpose)
- [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2) (paraphrase model)
- [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) (code-specialized)
- [microsoft/graphcodebert-base](https://huggingface.co/microsoft/graphcodebert-base) (graph-aware code model)
- [Alibaba-NLP/gte-Qwen2-1.5B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) (instruction model)
- [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) (multilingual model)
- [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) (modern embedding model)
- [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe) (mixture of experts)
- [Qodo/Qodo-Embed-1-1.5B](https://huggingface.co/Qodo/Qodo-Embed-1-1.5B) (code-specialized)
- [lightonai/Reason-ModernColBERT](https://huggingface.co/lightonai/Reason-ModernColBERT) (ColBERT architecture)
- [Linq-AI-Research/Linq-Embed-Mistral](https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral) (Mistral-based)
- [BAAI/bge-code-v1](https://huggingface.co/BAAI/bge-code-v1) (code-specialized BGE)
- [Salesforce/SFR-Embedding-Code-2B_R](https://huggingface.co/Salesforce/SFR-Embedding-Code-2B_R) (large code model)
### Distillation Method
- **Technique**: Model2Vec static embedding generation
- **Parameters**: PCA dims=256, SIF coefficient=1e-3, Zipf weighting=True
- **Training Data**: CodeSearchNet comment-code pairs
- **Languages**: Python, JavaScript, Java, PHP, Ruby, Go
---
*Report generated on {time.strftime("%Y-%m-%d %H:%M:%S")} using automated analysis pipeline.*
*For questions about methodology or results, please refer to the CodeSearchNet documentation.*
"""
return report
def export_results(self, output_file: str) -> None:
"""Export results to CSV format."""
if self.comparison_df is not None:
self.comparison_df.to_csv(output_file, index=False)
logger.info(f"Results exported to {output_file}")
def main(
results_dir: str = DEFAULT_EVALUATION_DIR,
model_name: str = "code_model2vec_distilled_models",
output: str = "REPORT.md",
export_csv: str | None = None,
) -> None:
"""Main analysis function."""
logger.info("Starting CodeSearchNet Analysis with Integrated Benchmarks")
logger.info("=" * 60)
# Setup output directories
output_dir, images_dir, reports_dir = setup_directories()
# Initialize analyzer with results directory (benchmarks are integrated)
analyzer = CodeSearchNetAnalyzer(
results_dir=results_dir,
benchmark_dir=None, # No longer needed - benchmarks are in comprehensive files
images_dir=images_dir,
)
# Load results (this will also load benchmark data from comprehensive files)
analyzer.load_results()
if not analyzer.results:
logger.error("No evaluation results found! Please run evaluation first.")
return
# Print summary (includes both evaluation and benchmark summaries)
analyzer.print_summary()
analyzer.analyze_language_performance()
# Analyze benchmark performance if available
if analyzer.benchmark_results:
analyzer.analyze_benchmark_performance()
else:
logger.warning("No benchmark results found. Models may have been evaluated with --skip-benchmark flag.")
# Generate comprehensive report with benchmark integration
logger.info("Generating comprehensive report with integrated benchmark data...")
report = analyzer.generate_comprehensive_report(model_name)
# Save report
report_path = Path(output)
with report_path.open("w") as f:
f.write(report)
# Export CSV if requested
if export_csv:
analyzer.export_results(export_csv)
# Export benchmark CSV if available
if analyzer.benchmark_df is not None and not analyzer.benchmark_df.empty:
benchmark_csv = report_path.parent / f"{model_name}_benchmark_comparison.csv"
analyzer.benchmark_df.to_csv(benchmark_csv, index=False)
logger.info(f"π Benchmark comparison saved to: {benchmark_csv}")
logger.info("β
CodeSearchNet analysis with integrated benchmarks complete!")
logger.info(f"π Report saved to: {report_path}")
logger.info(f"πΌοΈ Charts saved to: {images_dir}")
logger.info(f"πΎ Source: Comprehensive evaluation files in {results_dir}")
if __name__ == "__main__":
main()
|