File size: 8,726 Bytes
473c3a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from __future__ import annotations

import json
import logging
from pathlib import Path
from typing import TYPE_CHECKING, Any, cast

import huggingface_hub
import safetensors
from huggingface_hub import ModelCard, ModelCardData
from safetensors.numpy import save_file
from tokenizers import Tokenizer

if TYPE_CHECKING:
    import numpy as np

    from distiller.model2vec.utils import SafeOpenProtocol

logger = logging.getLogger(__name__)


def save_pretrained(
    folder_path: Path,
    embeddings: np.ndarray,
    tokenizer: Tokenizer,
    config: dict[str, Any],
    create_model_card: bool = True,
    subfolder: str | None = None,
    **kwargs: Any,
) -> None:
    """
    Save a model to a folder.

    :param folder_path: The path to the folder.
    :param embeddings: The embeddings.
    :param tokenizer: The tokenizer.
    :param config: A metadata config.
    :param create_model_card: Whether to create a model card.
    :param subfolder: The subfolder to save the model in.
    :param **kwargs: Any additional arguments.
    """
    folder_path = folder_path / subfolder if subfolder else folder_path
    folder_path.mkdir(exist_ok=True, parents=True)
    save_file({"embeddings": embeddings}, folder_path / "model.safetensors")
    tokenizer.save(str(folder_path / "tokenizer.json"), pretty=False)
    json.dump(config, open(folder_path / "config.json", "w"), indent=4)

    # Create modules.json
    modules = [{"idx": 0, "name": "0", "path": ".", "type": "sentence_transformers.models.StaticEmbedding"}]
    if config.get("normalize"):
        # If normalize=True, add sentence_transformers.models.Normalize
        modules.append({"idx": 1, "name": "1", "path": "1_Normalize", "type": "sentence_transformers.models.Normalize"})
    json.dump(modules, open(folder_path / "modules.json", "w"), indent=4)

    logger.info(f"Saved model to {folder_path}")

    # Optionally create the model card
    if create_model_card:
        _create_model_card(folder_path, **kwargs)


def _create_model_card(
    folder_path: Path,
    base_model_name: str = "unknown",
    license: str = "mit",
    language: list[str] | None = None,
    model_name: str | None = None,
    template_path: str = "modelcards/model_card_template.md",
    **kwargs: Any,
) -> None:
    """
    Create a model card and store it in the specified path.

    :param folder_path: The path where the model card will be stored.
    :param base_model_name: The name of the base model.
    :param license: The license to use.
    :param language: The language of the model.
    :param model_name: The name of the model to use in the Model Card.
    :param template_path: The path to the template.
    :param **kwargs: Additional metadata for the model card (e.g., model_name, base_model, etc.).
    """
    folder_path = Path(folder_path)
    model_name = model_name or folder_path.name
    full_path = Path(__file__).parent / template_path

    model_card_data = ModelCardData(
        model_name=model_name,
        base_model=base_model_name,
        license=license,
        language=language,
        tags=["embeddings", "static-embeddings", "sentence-transformers"],
        library_name="model2vec",
        **kwargs,
    )
    model_card = ModelCard.from_template(model_card_data, template_path=str(full_path))
    model_card.save(folder_path / "README.md")


def load_pretrained(
    folder_or_repo_path: str | Path,
    subfolder: str | None = None,
    token: str | None = None,
    from_sentence_transformers: bool = False,
) -> tuple[np.ndarray, Tokenizer, dict[str, Any], dict[str, Any]]:
    """
    Loads a pretrained model from a folder.

    :param folder_or_repo_path: The folder or repo path to load from.
        - If this is a local path, we will load from the local path.
        - If the local path is not found, we will attempt to load from the huggingface hub.
    :param subfolder: The subfolder to load from.
    :param token: The huggingface token to use.
    :param from_sentence_transformers: Whether to load the model from a sentence transformers model.
    :raises: FileNotFoundError if the folder exists, but the file does not exist locally.
    :return: The embeddings, tokenizer, config, and metadata.

    """
    if from_sentence_transformers:
        model_file = "0_StaticEmbedding/model.safetensors"
        tokenizer_file = "0_StaticEmbedding/tokenizer.json"
        config_name = "config_sentence_transformers.json"
    else:
        model_file = "model.safetensors"
        tokenizer_file = "tokenizer.json"
        config_name = "config.json"

    folder_or_repo_path = Path(folder_or_repo_path)

    local_folder = folder_or_repo_path / subfolder if subfolder else folder_or_repo_path

    if local_folder.exists():
        embeddings_path = local_folder / model_file
        if not embeddings_path.exists():
            msg = f"Embeddings file does not exist in {local_folder}"
            raise FileNotFoundError(msg)

        config_path = local_folder / config_name
        if not config_path.exists():
            msg = f"Config file does not exist in {local_folder}"
            raise FileNotFoundError(msg)

        tokenizer_path = local_folder / tokenizer_file
        if not tokenizer_path.exists():
            msg = f"Tokenizer file does not exist in {local_folder}"
            raise FileNotFoundError(msg)

        # README is optional, so this is a bit finicky.
        readme_path = local_folder / "README.md"
        metadata = _get_metadata_from_readme(readme_path)

    else:
        logger.info("Folder does not exist locally, attempting to use huggingface hub.")
        embeddings_path = Path(
            huggingface_hub.hf_hub_download(
                folder_or_repo_path.as_posix(), model_file, token=token, subfolder=subfolder
            )
        )

        try:
            readme_path = Path(
                huggingface_hub.hf_hub_download(
                    folder_or_repo_path.as_posix(), "README.md", token=token, subfolder=subfolder
                )
            )
            metadata = _get_metadata_from_readme(Path(readme_path))
        except Exception as e:
            # NOTE: we don't want to raise an error here, since the README is optional.
            logger.info(f"No README found in the model folder: {e} No model card loaded.")
            metadata = {}

        config_path = Path(
            huggingface_hub.hf_hub_download(
                folder_or_repo_path.as_posix(), config_name, token=token, subfolder=subfolder
            )
        )
        tokenizer_path = Path(
            huggingface_hub.hf_hub_download(
                folder_or_repo_path.as_posix(), tokenizer_file, token=token, subfolder=subfolder
            )
        )

    opened_tensor_file = cast("SafeOpenProtocol", safetensors.safe_open(embeddings_path, framework="numpy"))
    if from_sentence_transformers:
        embeddings = opened_tensor_file.get_tensor("embedding.weight")
    else:
        embeddings = opened_tensor_file.get_tensor("embeddings")

    tokenizer: Tokenizer = Tokenizer.from_file(str(tokenizer_path))
    config = json.load(open(config_path))

    if len(tokenizer.get_vocab()) != len(embeddings):
        logger.warning(
            f"Number of tokens does not match number of embeddings: `{len(tokenizer.get_vocab())}` vs `{len(embeddings)}`"
        )

    return embeddings, tokenizer, config, metadata


def _get_metadata_from_readme(readme_path: Path) -> dict[str, Any]:
    """Get metadata from a README file."""
    if not readme_path.exists():
        logger.info(f"README file not found in {readme_path}. No model card loaded.")
        return {}
    model_card = ModelCard.load(readme_path)
    data: dict[str, Any] = model_card.data.to_dict()
    if not data:
        logger.info("File README.md exists, but was empty. No model card loaded.")
    return data


def push_folder_to_hub(
    folder_path: Path, subfolder: str | None, repo_id: str, private: bool, token: str | None
) -> None:
    """
    Push a model folder to the huggingface hub, including model card.

    :param folder_path: The path to the folder.
    :param subfolder: The subfolder to push to.
        If None, the folder will be pushed to the root of the repo.
    :param repo_id: The repo name.
    :param private: Whether the repo is private.
    :param token: The huggingface token.
    """
    if not huggingface_hub.repo_exists(repo_id=repo_id, token=token):
        huggingface_hub.create_repo(repo_id, token=token, private=private)

    # Push model card and all model files to the Hugging Face hub
    huggingface_hub.upload_folder(repo_id=repo_id, folder_path=folder_path, token=token, path_in_repo=subfolder)

    logger.info(f"Pushed model to {repo_id}")