codemalt / src /distiller /config.py
Sarthak
chore: update README and REPORT with performance insights and dataset changes
0dbb356
"""
Shared configuration for the distiller package.
This module centralizes all configuration constants, default values, and common
settings used across distillation, evaluation, and benchmarking modules.
"""
import logging
from pathlib import Path
from typing import Any
from beam import GpuType, Image
from pydantic import BaseModel
# =============================================================================
# LOGGING CONFIGURATION
# =============================================================================
def setup_logging(level: int = logging.INFO) -> None:
"""Set up consistent logging across the package."""
log_dir = Path("logs")
log_dir.mkdir(parents=True, exist_ok=True)
log_path = log_dir / "distiller.log"
logging.basicConfig(
level=level,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[logging.StreamHandler(), logging.FileHandler(log_path, mode="a")],
)
# =============================================================================
# BEAM CLOUD CONFIGURATION
# =============================================================================
# Comprehensive Beam function configuration
class BeamFunctionConfig(BaseModel):
"""Complete configuration for Beam @function decorator parameters."""
# Resource allocation
cpu: float = 2.0 # Number of CPU cores
memory: int = 8192 # Memory in MiB (8GB)
gpu: GpuType | list[GpuType] = GpuType.A100_40 # GPU type
# Execution settings
timeout: int = 3600 * 12 # 12 hours timeout for long distillation jobs
retries: int = 2 # Retry failed tasks up to 2 times
headless: bool = False # Keep connected during execution
# Optional settings
callback_url: str | None = None # Webhook URL for task completion
name: str | None = None # Function name for deployment
task_policy: Any | None = None # Task lifecycle policy
retry_for: list[str] | None = None # Specific exceptions to retry on
# Environment and dependencies
secrets: list[str] = ["HF_ACCESS_TOKEN"] # Required secrets
env_vars: dict[str, str] = {
"TOKENIZERS_PARALLELISM": "false",
"CUDA_LAUNCH_BLOCKING": "0",
"PYTORCH_CUDA_ALLOC_CONF": "expandable_segments:True",
"TORCH_CUDNN_V8_API_ENABLED": "1",
# Flash attention environment variables
"FLASH_ATTENTION_FORCE_USE": "1",
"TORCH_COMPILE_DISABLE": "1",
}
# Configuration for different types of Beam jobs
BEAM_CONFIGS: dict[str, BeamFunctionConfig] = {
"distillation": BeamFunctionConfig(
cpu=4.0,
memory=16384, # 8GB for distillation
gpu=GpuType.A100_40,
timeout=3600 * 12, # 12 hours
retries=2,
secrets=["HF_ACCESS_TOKEN"],
),
"training": BeamFunctionConfig(
cpu=4.0,
memory=16384, # 8GB for distillation
gpu=[GpuType.H100, GpuType.A100_40],
timeout=3600 * 12, # 12 hours
retries=2,
secrets=["HF_ACCESS_TOKEN"],
),
"evaluation": BeamFunctionConfig(
cpu=2.0,
memory=8192, # 8GB for evaluation
gpu=GpuType.A100_40, # Smaller GPU for evaluation
timeout=3600 * 4, # 4 hours
retries=3,
secrets=["HF_ACCESS_TOKEN"],
),
}
# Default beam configuration
DEFAULT_BEAM_CONFIG = BEAM_CONFIGS["distillation"]
# Volume configurations for different workflows
class VolumeConfig(BaseModel):
"""Volume configuration container."""
name: str
mount_path: str
description: str = ""
# Define volume configurations - code_model2vec is the primary volume for all workflows
VOLUMES: dict[str, VolumeConfig] = {
"primary": VolumeConfig(
name="code_model2vec",
mount_path="./code_model2vec",
description="Primary volume for all distillation models, evaluations, benchmarks, and checkpoints",
),
# Legacy volume name mapping for backwards compatibility
"simplified": VolumeConfig(
name="code_model2vec",
mount_path="./code_model2vec",
description="Primary volume for all distillation models, evaluations, benchmarks, and checkpoints",
),
}
# Default volume name for all workflows
DEFAULT_VOLUME = "primary"
# Legacy environment settings (now part of BeamFunctionConfig)
BEAM_ENV_SETTINGS: dict[str, str] = DEFAULT_BEAM_CONFIG.env_vars
# Common Python packages for Beam images
COMMON_PACKAGES: list[str] = [
"torch>=2.7.0",
"transformers>=4.40.0",
"datasets>=3.2.0",
"sentence-transformers>=4.1.0",
"model2vec[train]>=0.5.0",
"tokenlearn>=0.2.0",
"numpy>=1.26.4",
"scikit-learn>=1.6.1",
"pandas>=2.0.0",
"tqdm>=4.65.0",
"plotly>=5.0.0",
"matplotlib>=3.7.0",
"seaborn>=0.12.0",
"typer>=0.16.0",
"pydantic>=2.11.5",
"hatchling>=1.27.0",
]
# Create common Beam image without flash-attn due to PyTorch version conflicts
IMAGE = Image(python_version="python3.12").add_python_packages(COMMON_PACKAGES)
# =============================================================================
# MODEL CONFIGURATION
# =============================================================================
# Teacher model configurations
TEACHER_MODELS: list[str] = [
"Alibaba-NLP/gte-Qwen2-1.5B-instruct",
"BAAI/bge-m3",
"jinaai/jina-embeddings-v3",
"lightonai/Reason-ModernColBERT",
"Linq-AI-Research/Linq-Embed-Mistral",
"microsoft/codebert-base",
"microsoft/graphcodebert-base",
"nomic-ai/nomic-embed-text-v2-moe",
"Qodo/Qodo-Embed-1-1.5B",
"sentence-transformers/all-MiniLM-L6-v2",
"sentence-transformers/all-mpnet-base-v2",
"sentence-transformers/paraphrase-MiniLM-L6-v2",
"jinaai/jina-embeddings-v2-base-code",
]
# Default evaluation models for comparison
DEFAULT_EVALUATION_MODELS: list[str] = [
"Alibaba-NLP/gte-Qwen2-1.5B-instruct",
"BAAI/bge-m3",
"huggingface/CodeBERTa-small-v1",
"jinaai/jina-embeddings-v3",
"lightonai/Reason-ModernColBERT",
"Linq-AI-Research/Linq-Embed-Mistral",
"microsoft/codebert-base",
"microsoft/graphcodebert-base",
"minishlab/potion-base-8M",
"minishlab/potion-retrieval-32M",
"minishlab/potion-multilingual-128M",
"nomic-ai/nomic-embed-text-v2-moe",
"Qodo/Qodo-Embed-1-1.5B",
"Salesforce/codet5-base",
"sentence-transformers/all-MiniLM-L12-v2",
"sentence-transformers/all-MiniLM-L6-v2",
"sentence-transformers/all-mpnet-base-v2",
"sentence-transformers/paraphrase-MiniLM-L6-v2",
"jinaai/jina-embeddings-v2-base-code",
]
# Model2Vec distillation parameters
class DistillationConfig(BaseModel):
"""Configuration for Model2Vec distillation parameters."""
# Teacher models for distillation
code_teacher_models: list[str] = TEACHER_MODELS
# Basic distillation parameters
optimal_pca_dims: int = 256
sif_coefficient: float = 1e-3
apply_zipf: bool = True
# Tokenlearn-specific parameters (POTION approach)
tokenlearn_dataset: str = "allenai/c4" # Dataset for tokenlearn featurization (following POTION paper)
tokenlearn_dataset_name: str = "en" # Use 'en' configuration for English text
tokenlearn_text_key: str = "text" # Text field to use from the dataset
tokenlearn_timeout_featurize: int = 21600 # 6 hour timeout for featurization (dataset needs ~5 hours)
tokenlearn_timeout_train: int = 7200 # 2 hour timeout for training
# Dataset sampling configuration
tokenlearn_max_samples: int = 50000 # Maximum samples to use for tokenlearn training
# Dataset configuration
use_optimized_dataset: bool = True # Use the pre-created optimized dataset from dataset.py
custom_dataset_path: str | None = "code_model2vec/dataset" # Path to custom dataset directory
distillation_config = DistillationConfig()
# =============================================================================
# DATASET CONFIGURATION
# =============================================================================
# Add a LanguagesConfig Pydantic model
class LanguagesConfig(BaseModel):
"""Configuration for languages used in evaluation."""
all: list[str] = [
"python",
"java",
"javascript",
"php",
"ruby",
"go",
]
languages_config = LanguagesConfig()
# Update CodeSearchNetConfig to use languages_config.all as the default for evaluation_languages
class CodeSearchNetConfig(BaseModel):
"""Configuration for CodeSearchNet evaluation settings."""
dataset_name: str = "code_search_net"
evaluation_languages: list[str] = languages_config.all
max_queries_per_language: int = 1000
similarity_threshold: float = 0.7
evaluation_metrics: list[str] = ["ndcg@1", "ndcg@5", "ndcg@10", "mrr", "recall@1", "recall@5", "recall@10"]
codesearchnet_config = CodeSearchNetConfig()
# Training dataset configuration
TRAINING_DATASET: str = "sentence-transformers/codesearchnet"
# =============================================================================
# OUTPUT DIRECTORY CONFIGURATION
# =============================================================================
# Standardized directory structure within code_model2vec
class StandardDirectories(BaseModel):
"""Standardized directory structure for code_model2vec workspace."""
# Root directory
root: str = "code_model2vec"
# Model directories
base: str = "code_model2vec/base" # Basic distilled models
final: str = "code_model2vec/final" # Final trained models
models: str = "code_model2vec/models" # Legacy/alternative models location
# Results directories
evaluation_results: str = "code_model2vec/evaluation_results"
benchmark_results: str = "code_model2vec/benchmark_results"
analysis_results: str = "code_model2vec/analysis_results"
# Working directories
checkpoints: str = "code_model2vec/checkpoints"
cache: str = "code_model2vec/cache"
temp: str = "code_model2vec/temp"
# Create global instance
directories = StandardDirectories()
# Legacy OutputDirs for backwards compatibility
class OutputDirs(BaseModel):
"""Base output directory structure for storing models, checkpoints, and results."""
base: str = "base"
models: str = "final"
checkpoints: str = "checkpoints"
evaluation_results: str = "evaluation_results"
benchmark_results: str = "benchmark_results"
analysis_results: str = "analysis_results"
cache: str = "cache"
output_dirs = OutputDirs()
# File naming patterns
class FilenamePatterns(BaseModel):
"""File naming patterns for evaluation, benchmark, checkpoint, and model files."""
evaluation: str = "codesearchnet_eval_{model_name}.json"
bencmark: str = "benchmark_{model_name}.json"
checkpoint: str = "checkpoints_{stage}_step_{step}.json"
model: str = "{teacher_model}_{dims}d"
filename_patterns = FilenamePatterns()
# =============================================================================
# ANALYSIS AND VISUALIZATION
# =============================================================================
# Chart configuration
class ChartConfig(BaseModel):
"""Chart configuration for analysis and visualization."""
figsize: tuple[int, int] = (12, 8)
dpi: int = 300
style: str = "whitegrid"
color_palette: str = "Set2"
save_formats: list[str] = ["png", "pdf"]
chart_config = ChartConfig()
# Performance thresholds for analysis
class PerformanceThresholds(BaseModel):
"""Performance thresholds for analysis results."""
excellent: float = 0.7
good: float = 0.5
fair: float = 0.3
pour: float = 0.1
performance_thresholds = PerformanceThresholds()
# =============================================================================
# HELPER FUNCTIONS
# =============================================================================
def get_volume_config() -> VolumeConfig:
"""Get volume configuration for any workflow - always returns the primary code_model2vec volume."""
return VOLUMES["primary"]
def get_output_path(base_path: str | Path, output_type: str) -> Path:
"""Get standardized output path for different types of outputs."""
base = Path(base_path)
if hasattr(output_dirs, output_type):
return base / getattr(output_dirs, output_type)
return base / output_type
def get_standard_directory(dir_type: str) -> str:
"""Get standardized directory path for any directory type."""
if hasattr(directories, dir_type):
return getattr(directories, dir_type)
# Default to relative path within code_model2vec
return f"code_model2vec/{dir_type}"
def ensure_checkpoint_directory(stage: str) -> str:
"""Ensure checkpoint directory exists for a specific stage and return the path."""
checkpoint_dir = f"{directories.checkpoints}/{stage}"
Path(checkpoint_dir).mkdir(parents=True, exist_ok=True)
return checkpoint_dir
def format_filename(pattern_key: str, **kwargs: Any) -> str:
"""Format filename using predefined patterns."""
if hasattr(filename_patterns, pattern_key):
return getattr(filename_patterns, pattern_key).format(**kwargs)
msg = f"Unknown filename pattern: {pattern_key}"
raise ValueError(msg)
def get_safe_model_name(model_name: str) -> str:
"""Convert model name to filesystem-safe name."""
return "".join(c for c in model_name if c.isalnum() or c in ("-", "_", ".")).replace("/", "_")
def get_beam_config(job_type: str = "distillation") -> BeamFunctionConfig:
"""Get Beam configuration for a specific job type."""
if job_type in BEAM_CONFIGS:
return BEAM_CONFIGS[job_type]
return DEFAULT_BEAM_CONFIG
def create_beam_function_kwargs(
job_type: str = "distillation", volume_config: VolumeConfig | None = None
) -> dict[str, Any]:
"""Create kwargs dictionary for @function decorator."""
from beam import Volume
config = get_beam_config(job_type)
volume_cfg = volume_config or get_volume_config()
# Convert GPU string to proper type if needed
gpu_type = config.gpu
kwargs: dict[str, Any] = {
"cpu": config.cpu,
"memory": config.memory,
"gpu": gpu_type,
"image": IMAGE,
"timeout": config.timeout,
"retries": config.retries,
"headless": config.headless,
"volumes": [Volume(name=volume_cfg.name, mount_path=volume_cfg.mount_path)],
"secrets": config.secrets,
"env": config.env_vars,
}
# Add optional parameters if they're set
if config.callback_url:
kwargs["callback_url"] = config.callback_url
if config.name:
kwargs["name"] = config.name
if config.task_policy:
kwargs["task_policy"] = config.task_policy
if config.retry_for:
kwargs["retry_for"] = config.retry_for
return kwargs
def get_distillation_function_kwargs() -> dict[str, Any]:
"""Get function kwargs specifically for distillation jobs."""
return create_beam_function_kwargs("distillation")
def get_training_function_kwargs() -> dict[str, Any]:
"""Get function kwargs specifically for training jobs."""
return create_beam_function_kwargs("training")
def get_evaluation_function_kwargs() -> dict[str, Any]:
"""Get function kwargs specifically for evaluation jobs."""
return create_beam_function_kwargs("evaluation")