Sarthak
feat: overhaul distiller package with unified CLI, enhanced evaluation, and modular structure
454e47c
"""
Common utilities for the distiller package.
This module provides shared functionality used across multiple components
including model discovery, result management, and initialization helpers.
"""
import json
import logging
from pathlib import Path
from types import TracebackType
from typing import Any
from .beam_utils import (
BeamCheckpointManager,
BeamEvaluationManager,
BeamModelManager,
BeamVolumeManager,
create_beam_utilities,
)
from .config import VolumeConfig, get_safe_model_name, get_volume_config, setup_logging
logger = logging.getLogger(__name__)
# =============================================================================
# BEAM UTILITIES MANAGEMENT
# =============================================================================
class BeamContext:
"""Context manager for Beam utilities with consistent initialization."""
def __init__(self, workflow: str, volume_config: VolumeConfig | None = None) -> None:
"""
Initialize Beam context.
Args:
workflow: Workflow type (distill, evaluate, benchmark, etc.)
volume_config: Optional custom volume config, otherwise inferred from workflow
"""
self.workflow = workflow
self.volume_config = volume_config or get_volume_config()
self.volume_manager: BeamVolumeManager | None = None
self.checkpoint_manager: BeamCheckpointManager | None = None
self.model_manager: BeamModelManager | None = None
self.evaluation_manager: BeamEvaluationManager | None = None
def __enter__(self) -> tuple[BeamVolumeManager, BeamCheckpointManager, BeamModelManager, BeamEvaluationManager]:
"""Enter context and initialize utilities."""
logger.info(f"🚀 Initializing Beam utilities for {self.workflow}")
logger.info(f"📁 Volume: {self.volume_config.name} at {self.volume_config.mount_path}")
self.volume_manager, self.checkpoint_manager, self.model_manager, self.evaluation_manager = (
create_beam_utilities(self.volume_config.name, self.volume_config.mount_path)
)
return self.volume_manager, self.checkpoint_manager, self.model_manager, self.evaluation_manager
def __exit__(
self,
exc_type: type[BaseException] | None,
exc_val: BaseException | None,
exc_tb: TracebackType | None,
) -> None:
"""Exit context with cleanup if needed."""
if exc_type:
logger.error(f"❌ Error in Beam context for {self.workflow}: {exc_val}")
else:
logger.info(f"✅ Beam context for {self.workflow} completed successfully")
def get_beam_utilities() -> tuple[BeamVolumeManager, BeamCheckpointManager, BeamModelManager, BeamEvaluationManager]:
"""
Get Beam utilities for a specific workflow.
Returns:
Tuple of (volume_manager, checkpoint_manager, model_manager, evaluation_manager)
"""
volume_config = get_volume_config()
return create_beam_utilities(volume_config.name, volume_config.mount_path)
# =============================================================================
# MODEL DISCOVERY
# =============================================================================
def discover_simplified_models(base_path: str | Path = ".") -> list[str]:
"""
Discover simplified distillation models in the specified directory.
Args:
base_path: Base path to search for models
Returns:
List of model paths sorted alphabetically
"""
base = Path(base_path)
# Look for models in common locations
search_patterns = [
"code_model2vec/final/**/",
"final/**/",
"code_model2vec_*/",
"*/config.json",
"*.safetensors",
]
discovered_models = []
for pattern in search_patterns:
matches = list(base.glob(pattern))
for match in matches:
if match.is_dir():
# Check if it's a valid model directory
if (match / "config.json").exists() or (match / "model.safetensors").exists():
discovered_models.append(str(match))
elif match.name == "config.json":
# Add parent directory if config.json found
discovered_models.append(str(match.parent))
# Remove duplicates and sort
unique_models = sorted(set(discovered_models))
logger.info(f"🔍 Discovered {len(unique_models)} models in {base_path}")
for model in unique_models:
logger.info(f" 📁 {model}")
return unique_models
def validate_model_path(model_path: str | Path, volume_manager: BeamVolumeManager | None = None) -> str | None:
"""
Validate and resolve model path, checking local filesystem and Beam volumes.
Args:
model_path: Path to model (can be local path or HuggingFace model name)
volume_manager: Optional volume manager for Beam volume checks
Returns:
Resolved model path or None if not found
"""
path = Path(model_path)
# Check if it's a HuggingFace model name
if "/" in str(model_path) and not path.exists() and not str(model_path).startswith("/"):
logger.info(f"📥 Treating as HuggingFace model: {model_path}")
return str(model_path)
# Check local filesystem
if path.exists():
logger.info(f"✅ Found local model: {model_path}")
return str(path)
# Check Beam volume if available
if volume_manager:
volume_path = Path(volume_manager.mount_path) / path.name
if volume_path.exists():
logger.info(f"✅ Found model in Beam volume: {volume_path}")
return str(volume_path)
# Check volume root
root_path = Path(volume_manager.mount_path)
if (root_path / "config.json").exists():
logger.info(f"✅ Found model in Beam volume root: {root_path}")
return str(root_path)
logger.warning(f"⚠️ Model not found: {model_path}")
return None
# =============================================================================
# RESULT MANAGEMENT
# =============================================================================
def save_results_with_backup(
results: dict[str, Any],
primary_path: str | Path,
model_name: str,
result_type: str = "evaluation",
volume_manager: BeamVolumeManager | None = None,
evaluation_manager: BeamEvaluationManager | None = None,
) -> bool:
"""
Save results with multiple backup strategies.
Args:
results: Results dictionary to save
primary_path: Primary save location
model_name: Model name for filename generation
result_type: Type of results (evaluation, benchmark, etc.)
volume_manager: Optional volume manager for Beam storage
evaluation_manager: Optional evaluation manager for specialized storage
Returns:
True if saved successfully to at least one location
"""
success_count = 0
safe_name = get_safe_model_name(model_name)
# Save to primary location
try:
primary = Path(primary_path)
primary.mkdir(parents=True, exist_ok=True)
filename = f"{result_type}_{safe_name}.json"
filepath = primary / filename
with filepath.open("w") as f:
json.dump(results, f, indent=2, default=str)
logger.info(f"💾 Saved {result_type} results to: {filepath}")
success_count += 1
except Exception as e:
logger.warning(f"⚠️ Failed to save to primary location: {e}")
# Save to Beam volume if available
if volume_manager:
try:
volume_path = Path(volume_manager.mount_path) / f"{result_type}_results"
volume_path.mkdir(parents=True, exist_ok=True)
filename = f"{result_type}_{safe_name}.json"
filepath = volume_path / filename
with filepath.open("w") as f:
json.dump(results, f, indent=2, default=str)
logger.info(f"💾 Saved {result_type} results to Beam volume: {filepath}")
success_count += 1
except Exception as e:
logger.warning(f"⚠️ Failed to save to Beam volume: {e}")
# Save via evaluation manager if available and appropriate
if evaluation_manager and result_type == "evaluation":
try:
success = evaluation_manager.save_evaluation_results(model_name, results)
if success:
logger.info(f"💾 Saved via evaluation manager for {model_name}")
success_count += 1
except Exception as e:
logger.warning(f"⚠️ Failed to save via evaluation manager: {e}")
return success_count > 0
def load_existing_results(
model_name: str,
result_type: str = "evaluation",
search_paths: list[str | Path] | None = None,
volume_manager: BeamVolumeManager | None = None,
evaluation_manager: BeamEvaluationManager | None = None,
) -> dict[str, Any] | None:
"""
Load existing results from multiple possible locations.
Args:
model_name: Model name to search for
result_type: Type of results to load
search_paths: Additional paths to search
volume_manager: Optional volume manager
evaluation_manager: Optional evaluation manager
Returns:
Results dictionary if found, None otherwise
"""
safe_name = get_safe_model_name(model_name)
filename = f"{result_type}_{safe_name}.json"
# Search in provided paths
if search_paths:
for search_path in search_paths:
filepath = Path(search_path) / filename
if filepath.exists():
try:
with filepath.open("r") as f:
results = json.load(f)
logger.info(f"📂 Loaded existing {result_type} results from: {filepath}")
return results
except Exception as e:
logger.warning(f"⚠️ Failed to load from {filepath}: {e}")
# Search in Beam volume
if volume_manager:
volume_path = Path(volume_manager.mount_path) / f"{result_type}_results" / filename
if volume_path.exists():
try:
with volume_path.open("r") as f:
results = json.load(f)
logger.info(f"📂 Loaded existing {result_type} results from Beam volume: {volume_path}")
return results
except Exception as e:
logger.warning(f"⚠️ Failed to load from Beam volume: {e}")
# Try evaluation manager
if evaluation_manager and result_type == "evaluation":
try:
results = evaluation_manager.load_evaluation_results(model_name)
if results:
logger.info(f"📂 Loaded existing {result_type} results via evaluation manager")
return results
except Exception as e:
logger.warning(f"⚠️ Failed to load via evaluation manager: {e}")
logger.info(f"ℹ️ No existing {result_type} results found for {model_name}")
return None
# =============================================================================
# WORKFLOW HELPERS
# =============================================================================
def print_workflow_summary(
workflow_name: str,
total_items: int,
processed_items: int,
skipped_items: int,
execution_time: float | None = None,
) -> None:
"""Print a standardized workflow summary."""
logger.info(f"\n✅ {workflow_name} complete!")
logger.info(f"📊 Total items: {total_items}")
logger.info(f"✨ Newly processed: {processed_items}")
logger.info(f"⏭️ Skipped (already done): {skipped_items}")
if execution_time:
logger.info(f"⏱️ Execution time: {execution_time:.2f} seconds")
def check_existing_results(
items: list[str],
result_type: str,
search_paths: list[str | Path] | None = None,
volume_manager: BeamVolumeManager | None = None,
) -> tuple[list[str], list[str]]:
"""
Check which items already have results and which need processing.
Args:
items: List of items (model names, etc.) to check
result_type: Type of results to check for
search_paths: Paths to search for existing results
volume_manager: Optional volume manager
Returns:
Tuple of (items_to_process, items_to_skip)
"""
to_process = []
to_skip = []
for item in items:
existing = load_existing_results(item, result_type, search_paths, volume_manager)
if existing:
to_skip.append(item)
else:
to_process.append(item)
return to_process, to_skip
# =============================================================================
# INITIALIZATION
# =============================================================================
def initialize_distiller_logging(level: int = logging.INFO) -> None:
"""Initialize logging for distiller package."""
setup_logging(level)
logger.info("🚀 Distiller package initialized")
# Ensure logging is set up when module is imported
initialize_distiller_logging()