|
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
import torch
|
|
|
|
def load_model():
|
|
model_path = "model"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model.to(device)
|
|
model.eval()
|
|
return tokenizer, model, device
|
|
|
|
def classify_email(text, tokenizer, model, device):
|
|
inputs = tokenizer(text, return_tensors="pt", max_length=256, padding="max_length", truncation=True)
|
|
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
with torch.no_grad():
|
|
logits = model(**inputs).logits
|
|
label_map = {0: "Incident", 1: "Request", 2: "Change", 3: "Problem"}
|
|
pred = torch.argmax(logits, dim=1).item()
|
|
return label_map[pred]
|
|
|