File size: 1,905 Bytes
73212c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
tags:
- pytorch
- anomaly-detection
- time-series
- gru
- sequence-model
- binary-classification
model-index:
- name: GRU Sequence Anomaly Detector
results: []
---
# GRU Sequence Anomaly Detector
This model uses a bidirectional GRU (Gated Recurrent Unit) architecture to detect anomalies in sequential tabular data β such as transaction records, log events, or sensor readings. It's designed for general-purpose anomaly detection and can be fine-tuned on domain-specific datasets.
## π§ Model Architecture
- **Type:** Bidirectional GRU
- **Input:** Sequence of numerical feature vectors `(batch_size, time_steps, input_dim)`
- **Output:** Binary classification (0 = normal, 1 = anomaly)
- **Layers:** 2-layer GRU β BatchNorm β Dense β Sigmoid
## π οΈ Intended Use
This model is ideal for:
- Transaction anomaly detection
- Time-series pattern disruption
- Sequential event log monitoring
It is open for fine-tuning using your labeled anomaly dataset via `fine_tune_template.py`.
## π How to Use
```python
import torch
from models.model import TxnAnomalyGRU
model = TxnAnomalyGRU(input_dim=32)
model.load_state_dict(torch.load("models/txn_anomaly_model.pt"))
model.eval()
```
Or use the ONNX version with ONNX Runtime:
```python
import onnxruntime
session = onnxruntime.InferenceSession("models/txn_anomaly_model.onnx")
outputs = session.run(None, {"input": your_input_array})
```
## π Fine-Tuning
To fine-tune on your own dataset:
```bash
python fine_tune_template.py --data your_dataset.csv
```
Ensure your data is preprocessed into sequences of the same input dimension (`input_dim=32` by default).
## π¦ Files Included
- `models/txn_anomaly_model.pt` β Pretrained PyTorch model
- `models/txn_anomaly_model.onnx` β ONNX export
- `fine_tune_template.py` β Script to fine-tune on your dataset
- `pipeline/main.py` β End-to-end pipeline
|