File size: 5,779 Bytes
1521bfa
 
 
 
69a6deb
 
 
 
 
 
 
f25adcb
 
69a6deb
 
 
 
 
 
 
 
 
 
 
 
6aa85d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b8b648
6aa85d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b8b648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aa85d9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
language:
- fa
library_name: transformers
widget:
  - text: "ز سوزناکی گفتار من [MASK] بگریست"
    example_title: "Poetry 1"
  - text: "نظر از تو برنگیرم همه [MASK] تا بمیرم که تو در دلم نشستی و سر مقام داری"
    example_title: "Poetry 2"
  - text: "هر ساعتم اندرون بجوشد [MASK] را وآگاهی نیست مردم بیرون را"
    example_title: "Poetry 3"
  - text: "غلام همت آن رند عافیت سوزم که در گدا صفتی [MASK] داند"
    example_title: "Poetry 4"
  - text: "این [MASK] اولشه."
    example_title: "Informal 1"
  - text: "دیگه خسته شدم! [MASK] اینم شد کار؟!"
    example_title: "Informal 2"
  - text: "فکر نکنم به موقع برسیم. بهتره [MASK] این یکی بشیم."
    example_title: "Informal 3"
  - text: "تا صبح بیدار موندم و داشتم برای [MASK] آماده می شدم."
    example_title: "Informal 4"
  - text: "زندگی بدون [MASK] خسته‌کننده است."
    example_title: "Formal 1"
  - text: "در حکم اولیه این شرکت مجاز به فعالیت شد ولی پس از بررسی مجدد، مجوز این شرکت [MASK] شد."
    example_title: "Formal 2"
---


# FaBERT: Pre-training BERT on Persian Blogs

## Model Details

FaBERT is a Persian BERT-base model trained on the diverse HmBlogs corpus, encompassing both casual and formal Persian texts. Developed for natural language processing tasks, FaBERT is a robust solution for processing Persian text. Through evaluation across various Natural Language Understanding (NLU) tasks, FaBERT consistently demonstrates notable improvements, while having a compact model size. Now available on Hugging Face, integrating FaBERT into your projects is hassle-free. Experience enhanced performance without added complexity as FaBERT tackles a variety of NLP tasks.

## Features
- Pre-trained on the diverse HmBlogs corpus consisting more than 50 GB of text from Persian Blogs
- Remarkable performance across various downstream NLP tasks
- BERT architecture with 124 million parameters

## Useful Links
- **Repository:** [FaBERT on Github](https://github.com/SBU-NLP-LAB/FaBERT)
- **Paper:** [ACL Anthology](https://aclanthology.org/2025.wnut-1.10/)

## Usage

### Loading the Model with MLM head

```python
from transformers import AutoTokenizer, AutoModelForMaskedLM

tokenizer = AutoTokenizer.from_pretrained("sbunlp/fabert") # make sure to use the default fast tokenizer
model = AutoModelForMaskedLM.from_pretrained("sbunlp/fabert")
```
### Downstream Tasks

Similar to the original English BERT, FaBERT can be fine-tuned on many downstream tasks.(https://huggingface.co/docs/transformers/en/training) 

Examples on Persian datasets are available in our [GitHub repository](#useful-links).

**make sure to use the default Fast Tokenizer**

## Training Details

FaBERT was pre-trained with the MLM (WWM) objective, and the resulting perplexity on validation set was 7.76.

| Hyperparameter    | Value        |
|-------------------|:--------------:|
| Batch Size        | 32           |
| Optimizer         | Adam         |
| Learning Rate     | 6e-5         |
| Weight Decay      | 0.01         |
| Total Steps       | 18 Million    |
| Warmup Steps      | 1.8 Million   |
| Precision Format  | TF32          |

## Evaluation

Here are some key performance results for the FaBERT model:

**Sentiment Analysis**
| Task         | FaBERT | ParsBERT | XLM-R |
|:-------------|:------:|:--------:|:-----:|
| MirasOpinion | **87.51**      | 86.73     | 84.92  |
| MirasIrony | 74.82      | 71.08     | **75.51**  |
| DeepSentiPers | **79.85**      | 74.94     | 79.00  |

**Named Entity Recognition**
| Task         | FaBERT | ParsBERT | XLM-R |
|:-------------|:------:|:--------:|:-----:|
| PEYMA        |   **91.39**    |   91.24   | 90.91  |
| ParsTwiner   |   **82.22**    |  81.13   | 79.50  |
| MultiCoNER v2   |   57.92    |   **58.09**   | 51.47  |

**Question Answering**
| Task         | FaBERT | ParsBERT | XLM-R |
|:-------------|:------:|:--------:|:-----:|
| ParsiNLU | **55.87**      | 44.89     | 42.55  |
| PQuAD  | 87.34      | 86.89     | **87.60**  |
| PCoQA  | **53.51**      | 50.96     | 51.12  |

**Natural Language Inference & QQP**
| Task         | FaBERT | ParsBERT | XLM-R |
|:-------------|:------:|:--------:|:-----:|
| FarsTail | **84.45**      | 82.52     | 83.50  |
| SBU-NLI | **66.65**      | 58.41     | 58.85  |
| ParsiNLU QQP | **82.62**      | 77.60     | 79.74  |

**Number of Parameters**
|          | FaBERT | ParsBERT | XLM-R |
|:-------------|:------:|:--------:|:-----:|
| Parameter Count (M) | 124      | 162     | 278  |
| Vocabulary Size (K) | 50      | 100     | 250  |

For a more detailed performance analysis refer to the paper.

## How to Cite

If you use FaBERT in your research or projects, please cite it using the following BibTeX:

```bibtex
@inproceedings{masumi-etal-2025-fabert,
    title = "{F}a{BERT}: Pre-training {BERT} on {P}ersian Blogs",
    author = "Masumi, Mostafa  and
      Majd, Seyed Soroush  and
      Shamsfard, Mehrnoush  and
      Beigy, Hamid",
    editor = "Bak, JinYeong  and
      Goot, Rob van der  and
      Jang, Hyeju  and
      Buaphet, Weerayut  and
      Ramponi, Alan  and
      Xu, Wei  and
      Ritter, Alan",
    booktitle = "Proceedings of the Tenth Workshop on Noisy and User-generated Text",
    month = may,
    year = "2025",
    address = "Albuquerque, New Mexico, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2025.wnut-1.10/",
    doi = "10.18653/v1/2025.wnut-1.10",
    pages = "85--96",
    ISBN = "979-8-89176-232-9",
}
```