File size: 13,301 Bytes
206d8e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# ported by Scott from research_dev/code/research/entity_resolution/judges_public/entity_extraction/extract_new_cases.py and extract_header_judges.py

import pandas as pd
import glob
import json
import sys
import os
import re
import argparse
import multiprocessing as mp
from multiprocessing.dummy import Pool as ThreadPool
import tqdm
import spacy
from spacy.util import registry
from spacy.tokenizer import Tokenizer
from pathlib import Path

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)   

MODEL_PATH = Path(__file__).resolve().parents[1] / 'model'
TOK_PATH = MODEL_PATH / 'tokenizer'

@registry.callbacks("custom_tok")
def get_custom():
    def load_it(nlp):
        tokenizer = Tokenizer(nlp.vocab)
        tokenizer.from_disk(TOK_PATH)
        return tokenizer    
    return load_it
jnlp = spacy.load(MODEL_PATH)

droppers = ['ebc','executive committee','unassigned','magistrate judge','magistrate judge unassigned magistrate',
'judge unassigned judge','judge unassigned', 'cvb judge', 'debt-magistrate','mia duty magistrate',
'CVRecovery Case CRStatistics Unassigned', 'Cvrecovery Case Crstatistics', 'civ','mdl']

base_prefixes = ['magistrate judge judge','us district judge','district judge','mag\. judge','magistrate judge','bankruptcy judge',
                 'honorable judge','mag judge','dist judge',
                 'magistrate','honorable', 'hon\.', 'judge', 'mj', 'justice']
base_prefixes_snr = ['senior '+b for b in base_prefixes]
base_prefixes_chief = ['chief '+b for b in base_prefixes]

all_prefixes = base_prefixes + base_prefixes_chief + base_prefixes_snr
all_prefixes = sorted(all_prefixes, key=lambda x: len(x.split()), reverse=True)

header_cause_pattern = re.compile(r'\s*cause:\s*',flags=re.I)
header_referred_pattern = re.compile(r'\s*referred\s*(to)?\s*', flags=re.I)
header_designated_pattern = re.compile(r'^designated\s*',flags=re.I)
dash_mj_pattern = re.compile(r'-mj$', flags=re.I)
header_prefixes = re.compile(rf'\b({"|".join(all_prefixes)})[\.]*($|(?=\s))', flags=re.I)


def judge_detection(judge_str):

    if not judge_str or len(judge_str)==0 or any(i for i in droppers if i.lower() == judge_str.lower()):
        return None

    if ' and ' in judge_str.lower():
        print(judge_str)

    cause = header_cause_pattern.search(judge_str)
    if cause:
        judge_str = judge_str[0:cause.start()]    

    referred = header_referred_pattern.search(judge_str)
    if referred:
        judge_str = judge_str[0:referred.start()]      

    designated = header_designated_pattern.search(judge_str)
    if designated:
        new_star = designated.end()
        judge_str = judge_str[new_star:]
    else:
        new_star = 0
    
    dash_mj = dash_mj_pattern.search(judge_str)
    if dash_mj:
        judge_str = judge_str[0:dash_mj.start()]


    m = header_prefixes.search(judge_str)
    if m:
        pref_span_start =  m.start()
        pref_span_end = m.end()

        pretext = judge_str[0:m.end()]
        name = judge_str[m.end()+1:]
        if name:
            name_span_start = m.end()+1 + new_star
            name_span_end = name_span_start + len(name)
        else:
            name_span_start = None
            name_span_end = None
    else:
        name = judge_str
        pretext = None
        name_span_start = 0 + new_star
        name_span_end = len(judge_str) + new_star
        pref_span_start =  None
        pref_span_end = None

    return {
        'extracted_pretext':pretext,
        'extracted_entity': name,
        'Ent_span_start':name_span_start,'Ent_span_end':name_span_end,
        'Pre_span_start':pref_span_start,'Pre_span_end':pref_span_end}


def extract_header_entities(header_judges):

    out_dicts = []
    
    if 'referred_judges' in header_judges:
        RJ_enum = 0
        for judge_string in header_judges['referred_judges']:
            label = f"RJ-{RJ_enum}"
            RJ_enum+=1
            detected_judge = judge_detection(judge_string)
            if detected_judge:
                out_dicts.append(
                    {
                    'original_text': judge_string,
                    **detected_judge,                 
                    'docket_source': 'case_header',                      
                    'Entity_Extraction_Method': 'referred_judges',
                    'judge_enum': RJ_enum,
                    'party_enum': None,
                    'pacer_id': None,                    
                    'docket_index': None                    
                    })

    if 'judge' in header_judges:
        label = "AJ"
        detected_judge = judge_detection(header_judges['judge'])
        if detected_judge:
            out_dicts.append(
                {
                'original_text': header_judges['judge'],
                **detected_judge,                 
                'docket_source': 'case_header',                      
                'Entity_Extraction_Method': 'assigned_judge',
                'judge_enum': 0,
                'party_enum': None,
                'pacer_id': None,                
                'docket_index': None                
                })

    return out_dicts


def extract_party_judge_entities(party_list):
    out_dicts = []
    for assigned, referred, pacer_id, p_enum in party_list:
        if referred:
            r_enum = 0
            for ref in referred:
                label = f"RJ-{r_enum}"
                r_enum+=1
                detected_judge = judge_detection(ref)
                if detected_judge:
                    out_dicts.append(
                        {
                        'original_text': ref,
                        **detected_judge,   
                        'docket_source': 'case_parties',                      
                        'Entity_Extraction_Method': 'referred_judges',
                        'judge_enum': r_enum,
                        'party_enum': p_enum,
                        'pacer_id': pacer_id,                        
                        'docket_index': None                        
                        })

        if assigned:
            label = f"AJ"
            detected_judge = judge_detection(assigned)
            if detected_judge:
                out_dicts.append(
                    {
                    'original_text': assigned,
                    **detected_judge,                     
                    'docket_source': 'case_parties',                      
                    'Entity_Extraction_Method': 'assigned_judge',
                    'judge_enum': 0,
                    'party_enum': p_enum,
                    'pacer_id': pacer_id,                    
                    'docket_index': None                    
                    })    
    
    return out_dicts
    

def extract_entities_sub_pipe(doc):
    
    out_dicts = []

    for jj in [ent for ent in doc.ents if ent.label_ == 'JUDGE']:

        pretext=None
        postext=None
        pre_ss=None
        pre_se=None
        post_ss=None
        post_se=None
        
        star = jj.start
        fin = jj.end
        # find previous n tokens
        n=7
        pre_n = doc[max(jj.start-n,0):jj.start]
        star = max(jj.start-n,0)
        if pre_n:
            pretext = pre_n.text
            pre_ss = pre_n.start_char
            pre_se = pre_n.end_char
            
        # find following n tokens
        n=7
        post_n = doc[jj.end:jj.end+n]
        fin = min(len(doc),jj.end+n)
        if post_n:
            postext = post_n.text
            post_ss = post_n.start_char
            post_se = post_n.end_char

        out_dicts.append(
                {
            'original_text': doc[star:fin].text,
            'full_span_start': doc[star:fin].start_char,
            'full_span_end': doc[star:fin].end_char,
            'extracted_pre_5': pretext,
            'extracted_entity': jj.text,
            'extracted_post_5': postext,
            'Ent_span_start': jj.start_char,
            'Ent_span_end': jj.end_char,                                  
            'docket_source': 'line_entry',
            'Entity_Extraction_Method': 'SPACY JNLP2'
            }
        )

    return out_dicts


def counsels_and_parties(case_parties, meta):

    counsels = []
    parties = []
    for party in case_parties:

        parties.append(
            {
            **meta,
            "Role":party['role'],
            "Entity": party['name']
            }
        )


        if 'counsel' in party:
            if not party['counsel']:
                continue
                
            for each in party['counsel']:
                counsels.append(
                    {
                    **meta,
                    "Role":party['role'],
                    "Entity": each['name']
                    }
                )
    
    return parties, counsels


def load_data(fpath, pbar):

    # open json
    with open(fpath) as f:
        case = json.load(f)

    year = int(case['filing_date'].split('/')[-1])
    if 'court' not in case:
        court = ucid.split(";;")[0]
    else:
        court = case['court']

    meta = {
        'ucid': case['ucid'],
        'court': court,
        'cid': case['case_id'],
        'year': year,
        'filing_date': case['filing_date']
    }
    
    ######################
    # PARTIES & COUNSELS #
    ######################
    if 'parties' in case and case['parties']:
        parties, counsels = counsels_and_parties(case['parties'], meta)
    else:
        parties, counsels = [], []

    #################
    # HEADER JUDGES #
    #################
    case_type = case['case_type']

    # we want to limit how much of the case jsons we are moving around in memory, so we cut out all the bulk quick and only 
    # pass along the values we care about
    header_keys_interested = ['judge','referred_judges']
    header_data = {key:case[key] for key in header_keys_interested if case[key]}

    header_judges = []
    if case_type == 'cr' and case['parties']:
        # LOOK THRU THE PARTIES
        party_judges = [(party['judge'], party['referred_judges'], party['pacer_id'], enum) 
                    for enum, party in enumerate(case['parties']) 
                    if party['judge'] or party['referred_judges']]
        if party_judges:
            party_info = extract_party_judge_entities(party_judges)
            padded_with_meta = [{**meta ,**each} for each in party_info]
            header_judges += padded_with_meta

    # CURRENT APPROACH, STANDARD META_KEYS
    # do it for every case type
    if header_data:
        header_info = extract_header_entities(header_data)
        padded_with_meta = [{**meta ,**each} for each in header_info]
        header_judges += padded_with_meta

    ################
    # ENTRY JUDGES #
    ################

    # extract all of the entries so we can leverage nlp.pipe after
    text_entries = []
    if 'docket' in case and case['docket']:
        meta = {
            'ucid': case['ucid'],
            'court': court,
            'year': year,
            'cid': case['case_id']
        }
        entries = [(d['docket_text'], d['date_filed']) for d in case['docket']]

        threeples = []
        threeples = [(*e, i, meta) for i,e in enumerate(entries)]
        text_entries += [(tup[0],tup[1:]) for tup in threeples]

    pbar.update()
    return (parties, counsels, header_judges, text_entries)


def run_thru_entries(texts, cores=8):
    processed_data = []
    for doc, context_tuple in tqdm.tqdm(
        jnlp.pipe(texts,
         n_process=cores, batch_size=1000,  as_tuples=True, disable = ['lemmatizer','tagger','parser','attribute_ruler','morphologizer','textcat']),
        total=len(texts), desc=f'[--Extraction--]', leave=True
        ):
        if 'JUDGE' in [ent.label_ for ent in doc.ents]:
            entry_date, enum_index, meta = context_tuple
            rows = extract_entities_sub_pipe(doc)

            rows = [
                {
                    **meta,
                    'docket_index': enum_index,
                    'entry_date': entry_date,
                    **row
                } for row in rows ]
            if rows:
                processed_data+=rows
    return processed_data


def main_run(indir, outdir, cores=10):

    fpaths = glob.glob(str(Path(indir).resolve()/'*.json'))
    pbar = tqdm.tqdm(total = len(fpaths))
    pool = ThreadPool(cores)
    returned_tuples = pool.starmap(load_data, ((fpath, pbar) for fpath in fpaths))

    pdf_rows = []
    cdf_rows = []
    hj_rows = []
    entry_rows = []
    for p,c,h,t in returned_tuples:
        if p:
            pdf_rows+=p
        if c:
            cdf_rows+=c
        if h:
            hj_rows+=h
        if t:
            entry_rows+=t

    PDF = pd.DataFrame(pdf_rows)
    CDF = pd.DataFrame(cdf_rows)
    Headers = pd.DataFrame(hj_rows)

    outdir = Path(outdir).resolve()
    PDF.to_csv(outdir/'parties.csv', index=False)
    CDF.to_csv(outdir/'counsels.csv', index=False)
    Headers.to_csv(outdir/'headers.csv', index=False)

    del(PDF)
    del(CDF)
    del(Headers)

    print("Now performing model extraction")
    extractions = run_thru_entries(entry_rows, cores)
    EDF = pd.DataFrame(extractions)
    EDF.to_csv(outdir / 'entries.csv', index=False)