File size: 13,301 Bytes
206d8e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
# ported by Scott from research_dev/code/research/entity_resolution/judges_public/entity_extraction/extract_new_cases.py and extract_header_judges.py
import pandas as pd
import glob
import json
import sys
import os
import re
import argparse
import multiprocessing as mp
from multiprocessing.dummy import Pool as ThreadPool
import tqdm
import spacy
from spacy.util import registry
from spacy.tokenizer import Tokenizer
from pathlib import Path
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
MODEL_PATH = Path(__file__).resolve().parents[1] / 'model'
TOK_PATH = MODEL_PATH / 'tokenizer'
@registry.callbacks("custom_tok")
def get_custom():
def load_it(nlp):
tokenizer = Tokenizer(nlp.vocab)
tokenizer.from_disk(TOK_PATH)
return tokenizer
return load_it
jnlp = spacy.load(MODEL_PATH)
droppers = ['ebc','executive committee','unassigned','magistrate judge','magistrate judge unassigned magistrate',
'judge unassigned judge','judge unassigned', 'cvb judge', 'debt-magistrate','mia duty magistrate',
'CVRecovery Case CRStatistics Unassigned', 'Cvrecovery Case Crstatistics', 'civ','mdl']
base_prefixes = ['magistrate judge judge','us district judge','district judge','mag\. judge','magistrate judge','bankruptcy judge',
'honorable judge','mag judge','dist judge',
'magistrate','honorable', 'hon\.', 'judge', 'mj', 'justice']
base_prefixes_snr = ['senior '+b for b in base_prefixes]
base_prefixes_chief = ['chief '+b for b in base_prefixes]
all_prefixes = base_prefixes + base_prefixes_chief + base_prefixes_snr
all_prefixes = sorted(all_prefixes, key=lambda x: len(x.split()), reverse=True)
header_cause_pattern = re.compile(r'\s*cause:\s*',flags=re.I)
header_referred_pattern = re.compile(r'\s*referred\s*(to)?\s*', flags=re.I)
header_designated_pattern = re.compile(r'^designated\s*',flags=re.I)
dash_mj_pattern = re.compile(r'-mj$', flags=re.I)
header_prefixes = re.compile(rf'\b({"|".join(all_prefixes)})[\.]*($|(?=\s))', flags=re.I)
def judge_detection(judge_str):
if not judge_str or len(judge_str)==0 or any(i for i in droppers if i.lower() == judge_str.lower()):
return None
if ' and ' in judge_str.lower():
print(judge_str)
cause = header_cause_pattern.search(judge_str)
if cause:
judge_str = judge_str[0:cause.start()]
referred = header_referred_pattern.search(judge_str)
if referred:
judge_str = judge_str[0:referred.start()]
designated = header_designated_pattern.search(judge_str)
if designated:
new_star = designated.end()
judge_str = judge_str[new_star:]
else:
new_star = 0
dash_mj = dash_mj_pattern.search(judge_str)
if dash_mj:
judge_str = judge_str[0:dash_mj.start()]
m = header_prefixes.search(judge_str)
if m:
pref_span_start = m.start()
pref_span_end = m.end()
pretext = judge_str[0:m.end()]
name = judge_str[m.end()+1:]
if name:
name_span_start = m.end()+1 + new_star
name_span_end = name_span_start + len(name)
else:
name_span_start = None
name_span_end = None
else:
name = judge_str
pretext = None
name_span_start = 0 + new_star
name_span_end = len(judge_str) + new_star
pref_span_start = None
pref_span_end = None
return {
'extracted_pretext':pretext,
'extracted_entity': name,
'Ent_span_start':name_span_start,'Ent_span_end':name_span_end,
'Pre_span_start':pref_span_start,'Pre_span_end':pref_span_end}
def extract_header_entities(header_judges):
out_dicts = []
if 'referred_judges' in header_judges:
RJ_enum = 0
for judge_string in header_judges['referred_judges']:
label = f"RJ-{RJ_enum}"
RJ_enum+=1
detected_judge = judge_detection(judge_string)
if detected_judge:
out_dicts.append(
{
'original_text': judge_string,
**detected_judge,
'docket_source': 'case_header',
'Entity_Extraction_Method': 'referred_judges',
'judge_enum': RJ_enum,
'party_enum': None,
'pacer_id': None,
'docket_index': None
})
if 'judge' in header_judges:
label = "AJ"
detected_judge = judge_detection(header_judges['judge'])
if detected_judge:
out_dicts.append(
{
'original_text': header_judges['judge'],
**detected_judge,
'docket_source': 'case_header',
'Entity_Extraction_Method': 'assigned_judge',
'judge_enum': 0,
'party_enum': None,
'pacer_id': None,
'docket_index': None
})
return out_dicts
def extract_party_judge_entities(party_list):
out_dicts = []
for assigned, referred, pacer_id, p_enum in party_list:
if referred:
r_enum = 0
for ref in referred:
label = f"RJ-{r_enum}"
r_enum+=1
detected_judge = judge_detection(ref)
if detected_judge:
out_dicts.append(
{
'original_text': ref,
**detected_judge,
'docket_source': 'case_parties',
'Entity_Extraction_Method': 'referred_judges',
'judge_enum': r_enum,
'party_enum': p_enum,
'pacer_id': pacer_id,
'docket_index': None
})
if assigned:
label = f"AJ"
detected_judge = judge_detection(assigned)
if detected_judge:
out_dicts.append(
{
'original_text': assigned,
**detected_judge,
'docket_source': 'case_parties',
'Entity_Extraction_Method': 'assigned_judge',
'judge_enum': 0,
'party_enum': p_enum,
'pacer_id': pacer_id,
'docket_index': None
})
return out_dicts
def extract_entities_sub_pipe(doc):
out_dicts = []
for jj in [ent for ent in doc.ents if ent.label_ == 'JUDGE']:
pretext=None
postext=None
pre_ss=None
pre_se=None
post_ss=None
post_se=None
star = jj.start
fin = jj.end
# find previous n tokens
n=7
pre_n = doc[max(jj.start-n,0):jj.start]
star = max(jj.start-n,0)
if pre_n:
pretext = pre_n.text
pre_ss = pre_n.start_char
pre_se = pre_n.end_char
# find following n tokens
n=7
post_n = doc[jj.end:jj.end+n]
fin = min(len(doc),jj.end+n)
if post_n:
postext = post_n.text
post_ss = post_n.start_char
post_se = post_n.end_char
out_dicts.append(
{
'original_text': doc[star:fin].text,
'full_span_start': doc[star:fin].start_char,
'full_span_end': doc[star:fin].end_char,
'extracted_pre_5': pretext,
'extracted_entity': jj.text,
'extracted_post_5': postext,
'Ent_span_start': jj.start_char,
'Ent_span_end': jj.end_char,
'docket_source': 'line_entry',
'Entity_Extraction_Method': 'SPACY JNLP2'
}
)
return out_dicts
def counsels_and_parties(case_parties, meta):
counsels = []
parties = []
for party in case_parties:
parties.append(
{
**meta,
"Role":party['role'],
"Entity": party['name']
}
)
if 'counsel' in party:
if not party['counsel']:
continue
for each in party['counsel']:
counsels.append(
{
**meta,
"Role":party['role'],
"Entity": each['name']
}
)
return parties, counsels
def load_data(fpath, pbar):
# open json
with open(fpath) as f:
case = json.load(f)
year = int(case['filing_date'].split('/')[-1])
if 'court' not in case:
court = ucid.split(";;")[0]
else:
court = case['court']
meta = {
'ucid': case['ucid'],
'court': court,
'cid': case['case_id'],
'year': year,
'filing_date': case['filing_date']
}
######################
# PARTIES & COUNSELS #
######################
if 'parties' in case and case['parties']:
parties, counsels = counsels_and_parties(case['parties'], meta)
else:
parties, counsels = [], []
#################
# HEADER JUDGES #
#################
case_type = case['case_type']
# we want to limit how much of the case jsons we are moving around in memory, so we cut out all the bulk quick and only
# pass along the values we care about
header_keys_interested = ['judge','referred_judges']
header_data = {key:case[key] for key in header_keys_interested if case[key]}
header_judges = []
if case_type == 'cr' and case['parties']:
# LOOK THRU THE PARTIES
party_judges = [(party['judge'], party['referred_judges'], party['pacer_id'], enum)
for enum, party in enumerate(case['parties'])
if party['judge'] or party['referred_judges']]
if party_judges:
party_info = extract_party_judge_entities(party_judges)
padded_with_meta = [{**meta ,**each} for each in party_info]
header_judges += padded_with_meta
# CURRENT APPROACH, STANDARD META_KEYS
# do it for every case type
if header_data:
header_info = extract_header_entities(header_data)
padded_with_meta = [{**meta ,**each} for each in header_info]
header_judges += padded_with_meta
################
# ENTRY JUDGES #
################
# extract all of the entries so we can leverage nlp.pipe after
text_entries = []
if 'docket' in case and case['docket']:
meta = {
'ucid': case['ucid'],
'court': court,
'year': year,
'cid': case['case_id']
}
entries = [(d['docket_text'], d['date_filed']) for d in case['docket']]
threeples = []
threeples = [(*e, i, meta) for i,e in enumerate(entries)]
text_entries += [(tup[0],tup[1:]) for tup in threeples]
pbar.update()
return (parties, counsels, header_judges, text_entries)
def run_thru_entries(texts, cores=8):
processed_data = []
for doc, context_tuple in tqdm.tqdm(
jnlp.pipe(texts,
n_process=cores, batch_size=1000, as_tuples=True, disable = ['lemmatizer','tagger','parser','attribute_ruler','morphologizer','textcat']),
total=len(texts), desc=f'[--Extraction--]', leave=True
):
if 'JUDGE' in [ent.label_ for ent in doc.ents]:
entry_date, enum_index, meta = context_tuple
rows = extract_entities_sub_pipe(doc)
rows = [
{
**meta,
'docket_index': enum_index,
'entry_date': entry_date,
**row
} for row in rows ]
if rows:
processed_data+=rows
return processed_data
def main_run(indir, outdir, cores=10):
fpaths = glob.glob(str(Path(indir).resolve()/'*.json'))
pbar = tqdm.tqdm(total = len(fpaths))
pool = ThreadPool(cores)
returned_tuples = pool.starmap(load_data, ((fpath, pbar) for fpath in fpaths))
pdf_rows = []
cdf_rows = []
hj_rows = []
entry_rows = []
for p,c,h,t in returned_tuples:
if p:
pdf_rows+=p
if c:
cdf_rows+=c
if h:
hj_rows+=h
if t:
entry_rows+=t
PDF = pd.DataFrame(pdf_rows)
CDF = pd.DataFrame(cdf_rows)
Headers = pd.DataFrame(hj_rows)
outdir = Path(outdir).resolve()
PDF.to_csv(outdir/'parties.csv', index=False)
CDF.to_csv(outdir/'counsels.csv', index=False)
Headers.to_csv(outdir/'headers.csv', index=False)
del(PDF)
del(CDF)
del(Headers)
print("Now performing model extraction")
extractions = run_thru_entries(entry_rows, cores)
EDF = pd.DataFrame(extractions)
EDF.to_csv(outdir / 'entries.csv', index=False) |