File size: 24,733 Bytes
103c8f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
import os
import json
import torch
import logging
from pathlib import Path
from dataclasses import dataclass
from typing import Optional, List, Dict, Tuple, Any
import transformers
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from datasets import Dataset, load_dataset
import numpy as np
from accelerate import Accelerator
from safetensors import safe_open
from safetensors.torch import save_file, load_file
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class TensorInfo:
"""Stores metadata about tensor indices and shape"""
shape: Tuple[int, ...]
dtype: str
indices: Optional[torch.Tensor] = None
hcf_patterns: Optional[Dict] = None
class SafeTensorHCFAnalyzer:
"""
Analyzes HCF patterns in model weights using SafeTensors format.
Handles efficient loading and analysis of large model weights.
"""
def __init__(self, tolerance: float = 1e-5):
self.tolerance = tolerance
self.tensor_info = {}
self.metadata = {}
def load_safetensor_file(self,
filepath: str,
device: str = 'cpu',
load_indices: bool = True) -> Dict[str, TensorInfo]:
"""
Load and parse a SafeTensor file with proper memory management.
Args:
filepath: Path to .safetensors file
device: Device to load tensors to
load_indices: Whether to load weight indices
Returns:
Dictionary mapping tensor names to their metadata
"""
try:
# First load metadata only to check structure
with safe_open(filepath, framework="pt") as f:
self.metadata = json.loads(f.metadata()) if f.metadata() else {}
# Load tensors efficiently
tensors = load_file(filepath, device=device)
for tensor_name, tensor in tensors.items():
self.tensor_info[tensor_name] = TensorInfo(
shape=tuple(tensor.shape),
dtype=str(tensor.dtype)
)
# Load indices if available in metadata
if load_indices and tensor_name in self.metadata:
if 'indices' in self.metadata[tensor_name]:
indices_data = self.metadata[tensor_name]['indices']
if isinstance(indices_data, list):
self.tensor_info[tensor_name].indices = torch.tensor(
indices_data, device=device
)
elif isinstance(indices_data, str) and os.path.exists(indices_data):
# Load indices from separate file if provided as path
self.tensor_info[tensor_name].indices = torch.load(indices_data)
return self.tensor_info
except Exception as e:
raise RuntimeError(f"Error loading SafeTensor file: {str(e)}")
def analyze_safetensor_weights(self,
filepath: str,
batch_size: int = 1000) -> Dict:
"""
Analyze weights from SafeTensor file in memory-efficient batches.
Args:
filepath: Path to .safetensors file
batch_size: Number of weights to process at once
Returns:
Analysis results including HCF patterns and optimization opportunities
"""
results = {
'tensor_hcfs': {},
'shared_patterns': [],
'optimization_suggestions': [],
'memory_impact': {}
}
# Process tensors in batches
with safe_open(filepath, framework="pt") as f:
for tensor_name in f.keys():
# Get tensor info
tensor_data = f.get_tensor(tensor_name)
tensor_size = np.prod(tensor_data.shape)
if tensor_name in self.tensor_info and self.tensor_info[tensor_name].indices is not None:
indices = self.tensor_info[tensor_name].indices
unique_indices = torch.unique(indices)
# Process each index group
tensor_hcfs = {}
for idx in unique_indices:
mask = (indices == idx)
indexed_weights = tensor_data[mask]
# Process in batches if needed
if len(indexed_weights) > batch_size:
hcf = self._process_large_weight_group(indexed_weights, batch_size)
else:
hcf = self._calculate_hcf(indexed_weights)
tensor_hcfs[idx.item()] = hcf
results['tensor_hcfs'][tensor_name] = tensor_hcfs
# Find optimization opportunities
patterns = self._analyze_weight_patterns(tensor_data, indices)
self.tensor_info[tensor_name].hcf_patterns = patterns
# Calculate potential memory savings
savings = self._estimate_memory_savings(patterns, tensor_data.dtype)
results['memory_impact'][tensor_name] = {
'original_size': tensor_size * tensor_data.element_size(),
'potential_savings': savings
}
# Find shared patterns across tensors
results['shared_patterns'] = self._find_shared_patterns()
results['optimization_suggestions'] = self._generate_optimization_suggestions(results)
return results
def _calculate_hcf(self, weights: torch.Tensor) -> float:
"""Calculate HCF for a tensor of weights, with tolerance for floating point"""
# Implementation placeholder - actual implementation would depend on specific needs
if len(weights) == 0:
return 0.0
return 1.0 # Simplified for example
def _gcd_float(self, a: float, b: float) -> float:
"""Calculate greatest common divisor for floating point numbers"""
# Implementation placeholder
return min(a, b) # Simplified for example
def _process_large_weight_group(self,
weights: torch.Tensor,
batch_size: int) -> float:
"""Process large weight groups in batches to manage memory."""
current_hcf = None
for i in range(0, len(weights), batch_size):
batch = weights[i:i + batch_size]
batch_hcf = self._calculate_hcf(batch)
if current_hcf is None:
current_hcf = batch_hcf
elif batch_hcf > self.tolerance:
current_hcf = self._gcd_float(current_hcf, batch_hcf)
return current_hcf if current_hcf is not None else 0.0
def _analyze_weight_patterns(self,
weights: torch.Tensor,
indices: torch.Tensor) -> Dict:
"""Analyze weight patterns within indexed groups."""
patterns = {}
unique_indices = torch.unique(indices)
for idx in unique_indices:
mask = (indices == idx)
pattern_weights = weights[mask]
patterns[idx.item()] = {
'mean': float(pattern_weights.mean()),
'std': float(pattern_weights.std()),
'size': len(pattern_weights),
'hcf': self._calculate_hcf(pattern_weights)
}
return patterns
def _estimate_memory_savings(self, patterns: Dict, dtype: torch.dtype) -> int:
"""Estimate potential memory savings from patterns"""
# Implementation placeholder
return sum(p['size'] for p in patterns.values()) // 2 # Simplified estimate
def _find_shared_patterns(self) -> List[Dict]:
"""Find patterns that could be shared across tensors."""
shared_patterns = []
pattern_groups = {}
for tensor_name, info in self.tensor_info.items():
if info.hcf_patterns:
for idx, pattern in info.hcf_patterns.items():
# Create pattern signature
signature = f"{pattern['mean']:.4f}_{pattern['std']:.4f}"
if signature not in pattern_groups:
pattern_groups[signature] = []
pattern_groups[signature].append({
'tensor': tensor_name,
'index': idx,
'pattern': pattern
})
# Find groups with similar patterns
for signature, group in pattern_groups.items():
if len(group) > 1:
shared_patterns.append({
'signature': signature,
'occurrences': group,
'potential_savings': sum(p['pattern']['size'] for p in group[1:])
})
return shared_patterns
def _generate_optimization_suggestions(self, results: Dict) -> List[Dict]:
"""Generate optimization suggestions based on analysis"""
# Implementation placeholder
suggestions = []
for tensor_name, impact in results['memory_impact'].items():
if impact['potential_savings'] > 1000000: # If savings > 1MB
suggestions.append({
'tensor': tensor_name,
'suggestion': 'Consider weight quantization',
'impact': f"Save {impact['potential_savings'] / 1024 / 1024:.2f}MB"
})
return suggestions
@dataclass
class TrainingStatistics:
"""Statistics collected during HCF-aware training"""
memory_savings: int = 0
quantization_error: float = 0.0
convergence_rate: float = 0.0
epoch: int = 0
batch_count: int = 0
def update(self, batch_stats: Dict[str, Any]):
"""Update statistics with batch results"""
self.memory_savings += batch_stats.get('memory_savings', 0)
self.quantization_error = batch_stats.get('quantization_error', self.quantization_error)
self.convergence_rate = batch_stats.get('convergence_rate', self.convergence_rate)
self.batch_count += 1
class HCFTrainingOptimizer(torch.optim.Adam):
"""
Optimizer with HCF-awareness for more efficient training
"""
def __init__(self,
params,
lr=0.001,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
weight_quantization=True,
maintain_patterns=True):
super().__init__(params, lr, betas, eps, weight_decay)
self.weight_quantization = weight_quantization
self.maintain_patterns = maintain_patterns
self.analyzer = SafeTensorHCFAnalyzer()
self.stats = {'memory_savings': 0, 'quantization_error': 0.0}
def step(self, closure=None):
"""Perform optimization step with HCF awareness"""
# Run standard optimization step
loss = super().step(closure)
# Apply HCF optimizations if enabled
if self.weight_quantization:
self._apply_weight_quantization()
if self.maintain_patterns:
self._maintain_weight_patterns()
return loss
def _apply_weight_quantization(self):
"""Apply dynamic weight quantization using HCF patterns"""
savings = 0
total_error = 0.0
for group in self.param_groups:
for p in group['params']:
if p.grad is None or not p.requires_grad:
continue
# Apply weight quantization logic based on HCF analysis
# This is a simplified placeholder - real implementation would be more complex
if p.dim() > 1: # Only apply to matrices/tensors
# Find suitable quantization factor
factor = torch.max(torch.abs(p.data)) / 127 # 8-bit quantization example
# Quantize weights
quantized = torch.round(p.data / factor) * factor
# Calculate error and savings
error = torch.mean((p.data - quantized)**2).item()
savings += p.numel() * (p.element_size() - 1) # Assuming 8-bit savings
# Apply quantized weights
p.data.copy_(quantized)
total_error += error
# Update statistics
self.stats['memory_savings'] = savings
self.stats['quantization_error'] = total_error
def _maintain_weight_patterns(self):
"""Maintain efficient weight patterns identified by HCF analysis"""
# Placeholder for pattern maintenance logic
# Real implementation would analyze weight matrices and enforce patterns
pass
def get_stats(self):
"""Get current optimization statistics"""
return self.stats
class HCFAwareTrainer:
"""
Trainer that incorporates HCF analysis for better training efficiency
"""
def __init__(self, model, optimizer):
self.model = model
self.optimizer = optimizer
self.analyzer = SafeTensorHCFAnalyzer()
def train_epoch(self, train_loader, criterion, epoch):
"""Train one epoch with HCF awareness"""
self.model.train()
stats = TrainingStatistics(epoch=epoch)
for batch_idx, batch in enumerate(train_loader):
# Get data
inputs, targets = self._prepare_batch(batch)
# Forward pass
self.optimizer.zero_grad()
outputs = self.model(inputs)
loss = criterion(outputs, targets)
# Backward pass
loss.backward()
# Optimize with HCF awareness
self.optimizer.step()
# Get batch statistics
batch_stats = self.optimizer.get_stats()
stats.update(batch_stats)
# Log progress
if batch_idx % 50 == 0:
logger.info(f"Epoch {epoch} | Batch {batch_idx}/{len(train_loader)} | "
f"Memory Savings: {stats.memory_savings/1024/1024:.2f}MB | "
f"Quantization Error: {stats.quantization_error:.6f}")
# End of epoch analysis
self._analyze_model_weights()
return stats
def _prepare_batch(self, batch):
"""Prepare batch data for training"""
# Implementation depends on dataset structure
if isinstance(batch, dict):
inputs = batch.get('input_ids')
targets = batch.get('labels', inputs)
else:
# Assume batch is a tuple of (inputs, targets)
inputs, targets = batch
return inputs, targets
def _analyze_model_weights(self):
"""Analyze model weights for patterns and optimizations"""
# Save model to temporary safetensor file for analysis
model_path = "temp_model.safetensors"
tensors = {name: param for name, param in self.model.named_parameters()}
save_file(tensors, model_path)
# Analyze weights
results = self.analyzer.analyze_safetensor_weights(model_path)
# Log findings
logger.info(f"Weight Analysis: Found {len(results['shared_patterns'])} shared patterns")
logger.info(f"Potential memory savings: "
f"{sum(i['potential_savings'] for i in results['memory_impact'].values())/1024/1024:.2f}MB")
# Clean up
if os.path.exists(model_path):
os.remove(model_path)
@dataclass
class ModelConfig:
name: str
model_id: str
tokenizer_id: str
CONFIGS = {
"7b": ModelConfig(
name="7b",
model_id="scrapegoat/ScrapeGoat-Music-Stage1",
tokenizer_id="scrapegoat/ScrapeGoat-Music-Stage1"
),
"1b": ModelConfig(
name="1b",
model_id="scrapegoat/ScrapeGoat-Music-Stage2",
tokenizer_id="scrapegoat/ScrapeGoat-Music-Stage2"
)
}
class MusicFineTuner:
def __init__(
self,
model_size: str,
dataset_path: str,
output_dir: str,
device: str = "auto",
batch_size: int = 4,
gradient_accumulation_steps: int = 4,
learning_rate: float = 1e-5,
num_epochs: int = 3,
use_hcf: bool = True
):
self.config = CONFIGS[model_size]
self.dataset_path = Path(dataset_path)
self.output_dir = Path(output_dir)
self.device = self._setup_device(device)
self.use_hcf = use_hcf
self.training_args = TrainingArguments(
output_dir=str(self.output_dir),
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
learning_rate=learning_rate,
num_train_epochs=num_epochs,
logging_steps=100,
save_steps=1000,
evaluation_strategy="steps",
eval_steps=500,
save_total_limit=3,
load_best_model_at_end=True,
gradient_checkpointing=True,
fp16=torch.cuda.is_available(),
optim="adamw_torch"
)
def _setup_device(self, device: str) -> str:
if device == "auto":
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
return device
def _load_model_and_tokenizer(self):
logger.info(f"Loading model {self.config.model_id}")
# Determine dtype based on device
dtype = torch.bfloat16 if self.device == "cuda" else torch.float32
model = AutoModelForCausalLM.from_pretrained(
self.config.model_id,
torch_dtype=dtype,
device_map="auto" if self.device == "cuda" else None,
attn_implementation="flash_attention_2" if self.device == "cuda" else "eager"
)
tokenizer = AutoTokenizer.from_pretrained(self.config.tokenizer_id)
return model, tokenizer
def _prepare_dataset(self, tokenizer):
logger.info("Preparing dataset")
with open(self.dataset_path / "metadata" / "dataset_info.json") as f:
metadata = json.load(f)
def generate_text(item):
return f"Genre: {item['genre']}\nDuration: {item['duration']:.2f}s\nTitle: {item['title']}\nArtist: {item['artist']}\n"
texts = [generate_text(item) for item in metadata["files"]]
dataset = Dataset.from_dict({"text": texts})
def tokenize(examples):
return tokenizer(
examples["text"],
truncation=True,
padding="max_length",
max_length=512,
return_tensors="pt"
)
tokenized_dataset = dataset.map(
tokenize,
batched=True,
remove_columns=dataset.column_names
)
return tokenized_dataset
def train(self):
# Create output directory
self.output_dir.mkdir(parents=True, exist_ok=True)
# Load model and tokenizer
model, tokenizer = self._load_model_and_tokenizer()
# Prepare dataset
dataset = self._prepare_dataset(tokenizer)
# Split dataset
dataset = dataset.train_test_split(test_size=0.1)
if self.use_hcf:
logger.info("Using HCF-aware training")
# Create custom HCF optimizer
optimizer = HCFTrainingOptimizer(
model.parameters(),
lr=self.training_args.learning_rate,
weight_quantization=True,
maintain_patterns=True
)
# Create HCF trainer
hcf_trainer = HCFAwareTrainer(model, optimizer)
# Create custom training loop
train_loader = torch.utils.data.DataLoader(
dataset["train"],
batch_size=self.training_args.per_device_train_batch_size,
shuffle=True
)
# Training loop with HCF awareness
criterion = torch.nn.CrossEntropyLoss()
for epoch in range(int(self.training_args.num_train_epochs)):
stats = hcf_trainer.train_epoch(train_loader, criterion, epoch)
# Log training metrics
logger.info(f"Epoch {epoch} completed")
logger.info(f"Memory Savings: {stats.memory_savings/1024/1024:.2f}MB")
logger.info(f"Quantization Error: {stats.quantization_error:.6f}")
logger.info(f"Convergence Rate: {stats.convergence_rate:.4f}")
# Save checkpoint
self._save_hcf_checkpoint(model, tokenizer, epoch)
else:
# Use standard HuggingFace Trainer
logger.info("Using standard training")
trainer = Trainer(
model=model,
args=self.training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
# Train
logger.info("Starting training")
trainer.train()
# Save final model
logger.info("Saving model")
model.save_pretrained(str(self.output_dir / "final_model"))
tokenizer.save_pretrained(str(self.output_dir / "final_model"))
def _save_hcf_checkpoint(self, model, tokenizer, epoch):
"""Save checkpoint with HCF metadata"""
checkpoint_dir = self.output_dir / f"checkpoint-{epoch}"
checkpoint_dir.mkdir(exist_ok=True)
# Save model and tokenizer
model.save_pretrained(str(checkpoint_dir))
tokenizer.save_pretrained(str(checkpoint_dir))
# Analyze and save HCF metadata
analyzer = SafeTensorHCFAnalyzer()
# Save tensors to analyze
model_path = str(checkpoint_dir / "model.safetensors")
if os.path.exists(model_path):
results = analyzer.analyze_safetensor_weights(model_path)
# Save analysis results
with open(checkpoint_dir / "hcf_analysis.json", "w") as f:
json.dump(results, f, indent=2)
logger.info(f"Saved checkpoint at {checkpoint_dir}")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model_size", type=str, choices=["1b", "7b"], required=True)
parser.add_argument("--dataset_path", type=str, required=True)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument("--device", type=str, default="auto")
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--gradient_accumulation_steps", type=int, default=4)
parser.add_argument("--learning_rate", type=float, default=1e-5)
parser.add_argument("--num_epochs", type=int, default=3)
parser.add_argument("--use_hcf", action="store_true", help="Enable HCF-aware training")
args = parser.parse_args()
fine_tuner = MusicFineTuner(
model_size=args.model_size,
dataset_path=args.dataset_path,
output_dir=args.output_dir,
device=args.device,
batch_size=args.batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
learning_rate=args.learning_rate,
num_epochs=args.num_epochs,
use_hcf=args.use_hcf
)
fine_tuner.train() |