File size: 1,346 Bytes
953ffa0
dfe27fc
23afc6c
953ffa0
 
dfe27fc
 
 
953ffa0
dfe27fc
 
 
953ffa0
 
dfe27fc
 
77a7c21
dfe27fc
77a7c21
dfe27fc
77a7c21
dfe27fc
6f99acd
dfe27fc
6f99acd
dfe27fc
6f99acd
dfe27fc
6f99acd
dfe27fc
6f99acd
dfe27fc
6f99acd
dfe27fc
6f99acd
dfe27fc
6f99acd
dfe27fc
 
 
 
 
 
 
 
 
 
 
6f99acd
dfe27fc
6f99acd
 
 
dfe27fc
6f99acd
dfe27fc
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
library_name: peft
license: gemma
base_model: google/codegemma-7b-it
tags:
- base_model:adapter:google/codegemma-7b-it
- lora
- transformers
pipeline_tag: text-generation
model-index:
- name: codegemma-7b-securecode
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# codegemma-7b-securecode

This model is a fine-tuned version of [google/codegemma-7b-it](https://huggingface.co/google/codegemma-7b-it) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3

### Training results



### Framework versions

- PEFT 0.18.1
- Transformers 5.1.0
- Pytorch 2.7.1+cu128
- Datasets 2.21.0
- Tokenizers 0.22.2