--- datasets: - bigcode/commitpackft language: - en base_model: - Qwen/Qwen2.5-Coder-1.5B-Instruct pipeline_tag: text2text-generation --- # Purpose Used for generating high quality commit messages for a given git difference ### Model Description Generated by fine tuning Qwen2.5-Coder-1.5B-Instruct on bigcode/commitpackft dataset for 2 epochs Trained on a total of 277 Languages Achieved a final training loss in the range of 1- 1.7 (due to data set not containing equal data rows for each language) For common languages(python, java ,javascripts,c etc) loss went for a minimum of 1.0335 ## Environmental Impact - **Hardware Type:** geforce RTX 4060 TI - 16GB] - **Hours used:** 10 Hours - **Cloud Provider:** local ### Results ![Logo](./image1.png) ![Logo](./image2.png) ### Inference ```python from llama_cpp import Llama llm = Llama.from_pretrained( repo_id="seniruk/commitGen-gguf", filename="commitGen.gguf", ) diff="" #the git difference instruction= "" #the instruction --> 'create a commit message for given git difference' prompt = "{}{}".format(instruction,diff) messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] output = llm.create_chat_completion( messages=messages, temperature=0.5 ) llm_message = output['choices'][0]['message']['content'] print(llm_message) ```