|
{ |
|
"architectures": [ |
|
"Qwen3NextForCausalLM" |
|
], |
|
"attention_bias": false, |
|
"attention_dropout": 0.0, |
|
"bos_token_id": 151643, |
|
"decoder_sparse_step": 1, |
|
"dtype": "bfloat16", |
|
"eos_token_id": 151645, |
|
"full_attention_interval": 4, |
|
"head_dim": 256, |
|
"hidden_act": "silu", |
|
"hidden_size": 2048, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 5120, |
|
"layer_types": [ |
|
"linear_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"full_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"full_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"full_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"full_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"full_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"full_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"full_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"full_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"full_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"full_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"full_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"linear_attention", |
|
"full_attention" |
|
], |
|
"linear_conv_kernel_dim": 4, |
|
"linear_key_head_dim": 128, |
|
"linear_num_key_heads": 16, |
|
"linear_num_value_heads": 32, |
|
"linear_value_head_dim": 128, |
|
"max_position_embeddings": 262144, |
|
"mlp_only_layers": [], |
|
"model_type": "qwen3_next", |
|
"moe_intermediate_size": 512, |
|
"norm_topk_prob": true, |
|
"num_attention_heads": 16, |
|
"num_experts": 512, |
|
"num_experts_per_tok": 10, |
|
"num_hidden_layers": 48, |
|
"num_key_value_heads": 2, |
|
"output_router_logits": false, |
|
"partial_rotary_factor": 0.25, |
|
"quantization_config": { |
|
"config_groups": { |
|
"group_0": { |
|
"format": "float-quantized", |
|
"input_activations": { |
|
"actorder": null, |
|
"block_structure": null, |
|
"dynamic": true, |
|
"group_size": null, |
|
"num_bits": 8, |
|
"observer": null, |
|
"observer_kwargs": {}, |
|
"strategy": "token", |
|
"symmetric": true, |
|
"type": "float" |
|
}, |
|
"output_activations": null, |
|
"targets": [ |
|
"Linear" |
|
], |
|
"weights": { |
|
"actorder": null, |
|
"block_structure": null, |
|
"dynamic": false, |
|
"group_size": null, |
|
"num_bits": 8, |
|
"observer": "minmax", |
|
"observer_kwargs": {}, |
|
"strategy": "channel", |
|
"symmetric": true, |
|
"type": "float" |
|
} |
|
} |
|
}, |
|
"format": "float-quantized", |
|
"global_compression_ratio": null, |
|
"ignore": [ |
|
"model.layers.0.linear_attn.in_proj_qkvz", |
|
"model.layers.0.linear_attn.in_proj_ba", |
|
"model.layers.0.linear_attn.out_proj", |
|
"model.layers.0.mlp.gate", |
|
"model.layers.0.mlp.shared_expert_gate", |
|
"model.layers.1.linear_attn.in_proj_qkvz", |
|
"model.layers.1.linear_attn.in_proj_ba", |
|
"model.layers.1.linear_attn.out_proj", |
|
"model.layers.1.mlp.gate", |
|
"model.layers.1.mlp.shared_expert_gate", |
|
"model.layers.2.linear_attn.in_proj_qkvz", |
|
"model.layers.2.linear_attn.in_proj_ba", |
|
"model.layers.2.linear_attn.out_proj", |
|
"model.layers.2.mlp.gate", |
|
"model.layers.2.mlp.shared_expert_gate", |
|
"model.layers.3.self_attn.q_proj", |
|
"model.layers.3.self_attn.k_proj", |
|
"model.layers.3.self_attn.v_proj", |
|
"model.layers.3.self_attn.o_proj", |
|
"model.layers.3.mlp.gate", |
|
"model.layers.3.mlp.shared_expert_gate", |
|
"model.layers.4.linear_attn.in_proj_qkvz", |
|
"model.layers.4.linear_attn.in_proj_ba", |
|
"model.layers.4.linear_attn.out_proj", |
|
"model.layers.4.mlp.gate", |
|
"model.layers.4.mlp.shared_expert_gate", |
|
"model.layers.5.linear_attn.in_proj_qkvz", |
|
"model.layers.5.linear_attn.in_proj_ba", |
|
"model.layers.5.linear_attn.out_proj", |
|
"model.layers.5.mlp.gate", |
|
"model.layers.5.mlp.shared_expert_gate", |
|
"model.layers.6.linear_attn.in_proj_qkvz", |
|
"model.layers.6.linear_attn.in_proj_ba", |
|
"model.layers.6.linear_attn.out_proj", |
|
"model.layers.6.mlp.gate", |
|
"model.layers.6.mlp.shared_expert_gate", |
|
"model.layers.7.self_attn.q_proj", |
|
"model.layers.7.self_attn.k_proj", |
|
"model.layers.7.self_attn.v_proj", |
|
"model.layers.7.self_attn.o_proj", |
|
"model.layers.7.mlp.gate", |
|
"model.layers.7.mlp.shared_expert_gate", |
|
"model.layers.8.linear_attn.in_proj_qkvz", |
|
"model.layers.8.linear_attn.in_proj_ba", |
|
"model.layers.8.linear_attn.out_proj", |
|
"model.layers.8.mlp.gate", |
|
"model.layers.8.mlp.shared_expert_gate", |
|
"model.layers.9.linear_attn.in_proj_qkvz", |
|
"model.layers.9.linear_attn.in_proj_ba", |
|
"model.layers.9.linear_attn.out_proj", |
|
"model.layers.9.mlp.gate", |
|
"model.layers.9.mlp.shared_expert_gate", |
|
"model.layers.10.linear_attn.in_proj_qkvz", |
|
"model.layers.10.linear_attn.in_proj_ba", |
|
"model.layers.10.linear_attn.out_proj", |
|
"model.layers.10.mlp.gate", |
|
"model.layers.10.mlp.shared_expert_gate", |
|
"model.layers.11.self_attn.q_proj", |
|
"model.layers.11.self_attn.k_proj", |
|
"model.layers.11.self_attn.v_proj", |
|
"model.layers.11.self_attn.o_proj", |
|
"model.layers.11.mlp.gate", |
|
"model.layers.11.mlp.shared_expert_gate", |
|
"model.layers.12.linear_attn.in_proj_qkvz", |
|
"model.layers.12.linear_attn.in_proj_ba", |
|
"model.layers.12.linear_attn.out_proj", |
|
"model.layers.12.mlp.gate", |
|
"model.layers.12.mlp.shared_expert_gate", |
|
"model.layers.13.linear_attn.in_proj_qkvz", |
|
"model.layers.13.linear_attn.in_proj_ba", |
|
"model.layers.13.linear_attn.out_proj", |
|
"model.layers.13.mlp.gate", |
|
"model.layers.13.mlp.shared_expert_gate", |
|
"model.layers.14.linear_attn.in_proj_qkvz", |
|
"model.layers.14.linear_attn.in_proj_ba", |
|
"model.layers.14.linear_attn.out_proj", |
|
"model.layers.14.mlp.gate", |
|
"model.layers.14.mlp.shared_expert_gate", |
|
"model.layers.15.self_attn.q_proj", |
|
"model.layers.15.self_attn.k_proj", |
|
"model.layers.15.self_attn.v_proj", |
|
"model.layers.15.self_attn.o_proj", |
|
"model.layers.15.mlp.gate", |
|
"model.layers.15.mlp.shared_expert_gate", |
|
"model.layers.16.linear_attn.in_proj_qkvz", |
|
"model.layers.16.linear_attn.in_proj_ba", |
|
"model.layers.16.linear_attn.out_proj", |
|
"model.layers.16.mlp.gate", |
|
"model.layers.16.mlp.shared_expert_gate", |
|
"model.layers.17.linear_attn.in_proj_qkvz", |
|
"model.layers.17.linear_attn.in_proj_ba", |
|
"model.layers.17.linear_attn.out_proj", |
|
"model.layers.17.mlp.gate", |
|
"model.layers.17.mlp.shared_expert_gate", |
|
"model.layers.18.linear_attn.in_proj_qkvz", |
|
"model.layers.18.linear_attn.in_proj_ba", |
|
"model.layers.18.linear_attn.out_proj", |
|
"model.layers.18.mlp.gate", |
|
"model.layers.18.mlp.shared_expert_gate", |
|
"model.layers.19.self_attn.q_proj", |
|
"model.layers.19.self_attn.k_proj", |
|
"model.layers.19.self_attn.v_proj", |
|
"model.layers.19.self_attn.o_proj", |
|
"model.layers.19.mlp.gate", |
|
"model.layers.19.mlp.shared_expert_gate", |
|
"model.layers.20.linear_attn.in_proj_qkvz", |
|
"model.layers.20.linear_attn.in_proj_ba", |
|
"model.layers.20.linear_attn.out_proj", |
|
"model.layers.20.mlp.gate", |
|
"model.layers.20.mlp.shared_expert_gate", |
|
"model.layers.21.linear_attn.in_proj_qkvz", |
|
"model.layers.21.linear_attn.in_proj_ba", |
|
"model.layers.21.linear_attn.out_proj", |
|
"model.layers.21.mlp.gate", |
|
"model.layers.21.mlp.shared_expert_gate", |
|
"model.layers.22.linear_attn.in_proj_qkvz", |
|
"model.layers.22.linear_attn.in_proj_ba", |
|
"model.layers.22.linear_attn.out_proj", |
|
"model.layers.22.mlp.gate", |
|
"model.layers.22.mlp.shared_expert_gate", |
|
"model.layers.23.self_attn.q_proj", |
|
"model.layers.23.self_attn.k_proj", |
|
"model.layers.23.self_attn.v_proj", |
|
"model.layers.23.self_attn.o_proj", |
|
"model.layers.23.mlp.gate", |
|
"model.layers.23.mlp.shared_expert_gate", |
|
"model.layers.24.linear_attn.in_proj_qkvz", |
|
"model.layers.24.linear_attn.in_proj_ba", |
|
"model.layers.24.linear_attn.out_proj", |
|
"model.layers.24.mlp.gate", |
|
"model.layers.24.mlp.shared_expert_gate", |
|
"model.layers.25.linear_attn.in_proj_qkvz", |
|
"model.layers.25.linear_attn.in_proj_ba", |
|
"model.layers.25.linear_attn.out_proj", |
|
"model.layers.25.mlp.gate", |
|
"model.layers.25.mlp.shared_expert_gate", |
|
"model.layers.26.linear_attn.in_proj_qkvz", |
|
"model.layers.26.linear_attn.in_proj_ba", |
|
"model.layers.26.linear_attn.out_proj", |
|
"model.layers.26.mlp.gate", |
|
"model.layers.26.mlp.shared_expert_gate", |
|
"model.layers.27.self_attn.q_proj", |
|
"model.layers.27.self_attn.k_proj", |
|
"model.layers.27.self_attn.v_proj", |
|
"model.layers.27.self_attn.o_proj", |
|
"model.layers.27.mlp.gate", |
|
"model.layers.27.mlp.shared_expert_gate", |
|
"model.layers.28.linear_attn.in_proj_qkvz", |
|
"model.layers.28.linear_attn.in_proj_ba", |
|
"model.layers.28.linear_attn.out_proj", |
|
"model.layers.28.mlp.gate", |
|
"model.layers.28.mlp.shared_expert_gate", |
|
"model.layers.29.linear_attn.in_proj_qkvz", |
|
"model.layers.29.linear_attn.in_proj_ba", |
|
"model.layers.29.linear_attn.out_proj", |
|
"model.layers.29.mlp.gate", |
|
"model.layers.29.mlp.shared_expert_gate", |
|
"model.layers.30.linear_attn.in_proj_qkvz", |
|
"model.layers.30.linear_attn.in_proj_ba", |
|
"model.layers.30.linear_attn.out_proj", |
|
"model.layers.30.mlp.gate", |
|
"model.layers.30.mlp.shared_expert_gate", |
|
"model.layers.31.self_attn.q_proj", |
|
"model.layers.31.self_attn.k_proj", |
|
"model.layers.31.self_attn.v_proj", |
|
"model.layers.31.self_attn.o_proj", |
|
"model.layers.31.mlp.gate", |
|
"model.layers.31.mlp.shared_expert_gate", |
|
"model.layers.32.linear_attn.in_proj_qkvz", |
|
"model.layers.32.linear_attn.in_proj_ba", |
|
"model.layers.32.linear_attn.out_proj", |
|
"model.layers.32.mlp.gate", |
|
"model.layers.32.mlp.shared_expert_gate", |
|
"model.layers.33.linear_attn.in_proj_qkvz", |
|
"model.layers.33.linear_attn.in_proj_ba", |
|
"model.layers.33.linear_attn.out_proj", |
|
"model.layers.33.mlp.gate", |
|
"model.layers.33.mlp.shared_expert_gate", |
|
"model.layers.34.linear_attn.in_proj_qkvz", |
|
"model.layers.34.linear_attn.in_proj_ba", |
|
"model.layers.34.linear_attn.out_proj", |
|
"model.layers.34.mlp.gate", |
|
"model.layers.34.mlp.shared_expert_gate", |
|
"model.layers.35.self_attn.q_proj", |
|
"model.layers.35.self_attn.k_proj", |
|
"model.layers.35.self_attn.v_proj", |
|
"model.layers.35.self_attn.o_proj", |
|
"model.layers.35.mlp.gate", |
|
"model.layers.35.mlp.shared_expert_gate", |
|
"model.layers.36.linear_attn.in_proj_qkvz", |
|
"model.layers.36.linear_attn.in_proj_ba", |
|
"model.layers.36.linear_attn.out_proj", |
|
"model.layers.36.mlp.gate", |
|
"model.layers.36.mlp.shared_expert_gate", |
|
"model.layers.37.linear_attn.in_proj_qkvz", |
|
"model.layers.37.linear_attn.in_proj_ba", |
|
"model.layers.37.linear_attn.out_proj", |
|
"model.layers.37.mlp.gate", |
|
"model.layers.37.mlp.shared_expert_gate", |
|
"model.layers.38.linear_attn.in_proj_qkvz", |
|
"model.layers.38.linear_attn.in_proj_ba", |
|
"model.layers.38.linear_attn.out_proj", |
|
"model.layers.38.mlp.gate", |
|
"model.layers.38.mlp.shared_expert_gate", |
|
"model.layers.39.self_attn.q_proj", |
|
"model.layers.39.self_attn.k_proj", |
|
"model.layers.39.self_attn.v_proj", |
|
"model.layers.39.self_attn.o_proj", |
|
"model.layers.39.mlp.gate", |
|
"model.layers.39.mlp.shared_expert_gate", |
|
"model.layers.40.linear_attn.in_proj_qkvz", |
|
"model.layers.40.linear_attn.in_proj_ba", |
|
"model.layers.40.linear_attn.out_proj", |
|
"model.layers.40.mlp.gate", |
|
"model.layers.40.mlp.shared_expert_gate", |
|
"model.layers.41.linear_attn.in_proj_qkvz", |
|
"model.layers.41.linear_attn.in_proj_ba", |
|
"model.layers.41.linear_attn.out_proj", |
|
"model.layers.41.mlp.gate", |
|
"model.layers.41.mlp.shared_expert_gate", |
|
"model.layers.42.linear_attn.in_proj_qkvz", |
|
"model.layers.42.linear_attn.in_proj_ba", |
|
"model.layers.42.linear_attn.out_proj", |
|
"model.layers.42.mlp.gate", |
|
"model.layers.42.mlp.shared_expert_gate", |
|
"model.layers.43.self_attn.q_proj", |
|
"model.layers.43.self_attn.k_proj", |
|
"model.layers.43.self_attn.v_proj", |
|
"model.layers.43.self_attn.o_proj", |
|
"model.layers.43.mlp.gate", |
|
"model.layers.43.mlp.shared_expert_gate", |
|
"model.layers.44.linear_attn.in_proj_qkvz", |
|
"model.layers.44.linear_attn.in_proj_ba", |
|
"model.layers.44.linear_attn.out_proj", |
|
"model.layers.44.mlp.gate", |
|
"model.layers.44.mlp.shared_expert_gate", |
|
"model.layers.45.linear_attn.in_proj_qkvz", |
|
"model.layers.45.linear_attn.in_proj_ba", |
|
"model.layers.45.linear_attn.out_proj", |
|
"model.layers.45.mlp.gate", |
|
"model.layers.45.mlp.shared_expert_gate", |
|
"model.layers.46.linear_attn.in_proj_qkvz", |
|
"model.layers.46.linear_attn.in_proj_ba", |
|
"model.layers.46.linear_attn.out_proj", |
|
"model.layers.46.mlp.gate", |
|
"model.layers.46.mlp.shared_expert_gate", |
|
"model.layers.47.self_attn.q_proj", |
|
"model.layers.47.self_attn.k_proj", |
|
"model.layers.47.self_attn.v_proj", |
|
"model.layers.47.self_attn.o_proj", |
|
"model.layers.47.mlp.gate", |
|
"model.layers.47.mlp.shared_expert_gate", |
|
"lm_head" |
|
], |
|
"kv_cache_scheme": null, |
|
"quant_method": "compressed-tensors", |
|
"quantization_status": "compressed", |
|
"sparsity_config": {}, |
|
"transform_config": {}, |
|
"version": "0.11.1.dev19+g0b686cd.d20250910" |
|
}, |
|
"rms_norm_eps": 1e-06, |
|
"rope_scaling": null, |
|
"rope_theta": 10000000, |
|
"router_aux_loss_coef": 0.001, |
|
"shared_expert_intermediate_size": 512, |
|
"tie_word_embeddings": false, |
|
"transformers_version": "4.57.0.dev0", |
|
"use_cache": true, |
|
"use_sliding_window": false, |
|
"vocab_size": 151936 |
|
} |