File size: 14,156 Bytes
8e93bde 81d66fc 4852b2b 81d66fc 8e93bde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
---
license: apache-2.0
language:
- en
base_model:
- huawei-noah/TinyBERT_General_6L_768D
---
# π TinyBERT Indian Address NER Model
This model is a fine-tuned **TinyBERT** for **Named Entity Recognition (NER)** on Indian addresses. It can extract and classify various address components from Indian address text with high accuracy, leveraging TinyBERT's efficient and lightweight architecture.
## π― Model Description
TinyBERT fine-tuned for Indian address Named Entity Recognition (NER)
### Key Capabilities
- **Address Component Extraction**: Identify and classify various parts of Indian addresses
- **Multi-format Support**: Handle various Indian address formats and styles
- **Lightweight Architecture**: Built on TinyBERT's efficient transformer design
- **High Accuracy**: Fine-tuned on augmented Indian address dataset
- **Fast Inference**: Optimized TinyBERT for quick entity extraction
- **Robust Recognition**: Handles partial, incomplete, or informal addresses
- **Efficient Processing**: TinyBERT's compact design for better performance
- **Mobile-Friendly**: Smaller model size suitable for edge deployment
- **Resource Efficient**: Lower memory and computational requirements
## π Model Architecture
- **Base Model**: huawei-noah/TinyBERT_General_6L_768D (TinyBERT)
- **Model Type**: Token Classification (NER)
- **Vocabulary Size**: 30,522 tokens
- **Hidden Size**: 768
- **Number of Layers**: 6
- **Attention Heads**: 12
- **Max Sequence Length**: 512 tokens
- **Number of Labels**: 23
- **Model Size**: ~761MB
- **Checkpoint**: 20793
## Performance Metrics
| Average Type | Precision | Recall | F1-Score |
| :-------------- | :-------- | :----- | :------- |
| Micro Average | 0.93 | 0.94 | 0.94 |
| Macro Average | 0.80 | 0.80 | 0.80 |
| Weighted Average | 0.93 | 0.94 | 0.94 |
## π Usage Examples
```python
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification
import warnings
warnings.filterwarnings("ignore")
class IndianAddressNER:
def __init__(self):
model_name = "shiprocket-ai/open-tinybert-indian-address-ner"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForTokenClassification.from_pretrained(model_name)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
self.model.eval()
# Entity mappings
self.id2entity = {
"0": "O",
"1": "B-building_name",
"2": "I-building_name",
"3": "B-city",
"4": "I-city",
"5": "B-country",
"6": "I-country",
"7": "B-floor",
"8": "I-floor",
"9": "B-house_details",
"10": "I-house_details",
"11": "B-locality",
"12": "I-locality",
"13": "B-pincode",
"14": "I-pincode",
"15": "B-road",
"16": "I-road",
"17": "B-state",
"18": "I-state",
"19": "B-sub_locality",
"20": "I-sub_locality",
"21": "B-landmarks",
"22": "I-landmarks"
}
def predict(self, address):
"""Extract entities from an Indian address - FIXED VERSION"""
if not address.strip():
return {}
# Tokenize with offset mapping for better text reconstruction
inputs = self.tokenizer(
address,
return_tensors="pt",
truncation=True,
padding=True,
max_length=128,
return_offsets_mapping=True
)
# Extract offset mapping before moving to device
offset_mapping = inputs.pop("offset_mapping")[0]
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Predict
with torch.no_grad():
outputs = self.model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_ids = torch.argmax(predictions, dim=-1)
confidence_scores = torch.max(predictions, dim=-1)[0]
# Extract entities using offset mapping
entities = self.extract_entities_with_offsets(
address,
predicted_ids[0],
confidence_scores[0],
offset_mapping
)
return entities
def extract_entities_with_offsets(self, original_text, predicted_ids, confidences, offset_mapping):
"""Extract entities using offset mapping for accurate text reconstruction"""
entities = {}
current_entity = None
for i, (pred_id, conf) in enumerate(zip(predicted_ids, confidences)):
if i >= len(offset_mapping):
break
start, end = offset_mapping[i]
# Skip special tokens (they have (0,0) mapping)
if start == end == 0:
continue
label = self.id2entity.get(str(pred_id.item()), "O")
if label.startswith("B-"):
# Save previous entity
if current_entity:
entity_type = current_entity["type"]
if entity_type not in entities:
entities[entity_type] = []
entities[entity_type].append({
"text": current_entity["text"],
"confidence": current_entity["confidence"]
})
# Start new entity
entity_type = label[2:] # Remove "B-"
current_entity = {
"type": entity_type,
"text": original_text[start:end],
"confidence": conf.item(),
"start": start,
"end": end
}
elif label.startswith("I-") and current_entity:
# Continue current entity
entity_type = label[2:] # Remove "I-"
if entity_type == current_entity["type"]:
# Extend the entity to include this token
current_entity["text"] = original_text[current_entity["start"]:end]
current_entity["confidence"] = (current_entity["confidence"] + conf.item()) / 2
current_entity["end"] = end
elif label == "O" and current_entity:
# End current entity
entity_type = current_entity["type"]
if entity_type not in entities:
entities[entity_type] = []
entities[entity_type].append({
"text": current_entity["text"],
"confidence": current_entity["confidence"]
})
current_entity = None
# Add final entity if exists
if current_entity:
entity_type = current_entity["type"]
if entity_type not in entities:
entities[entity_type] = []
entities[entity_type].append({
"text": current_entity["text"],
"confidence": current_entity["confidence"]
})
return entities
# Usage example
ner = IndianAddressNER()
# Test addresses
test_addresses = [
"Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058",
"DLF Cyber City, Sector 25, Gurgaon, Haryana",
"Flat 201, MG Road, Bangalore, Karnataka, 560001",
"Phoenix Mall, Kurla West, Mumbai"
]
print("π INDIAN ADDRESS NER EXAMPLES")
print("=" * 50)
for address in test_addresses:
print(f"\nπ Address: {address}")
entities = ner.predict(address)
if entities:
for entity_type, entity_list in sorted(entities.items()):
print(f"π·οΈ {entity_type.replace('_', ' ').title()}:")
for entity in entity_list:
confidence = entity['confidence']
text = entity['text']
confidence_icon = "π’" if confidence > 0.8 else "π‘" if confidence > 0.6 else "π΄"
print(f" {confidence_icon} {text} (confidence: {confidence:.3f})")
else:
print("β No entities found")
print("-" * 40)
```
## π·οΈ Supported Entity Types
The model can identify and extract the following address components:
- **Building Name**: building_name
- **City**: city
- **Country**: country
- **Floor**: floor
- **House Details**: house_details
- **Landmarks**: landmarks
- **Locality**: locality
- **Pincode**: pincode
- **Road**: road
- **State**: state
- **Sub Locality**: sub_locality
## π Performance Highlights
- **Indian Address Optimized**: Specialized for Indian address patterns and formats
- **TinyBERT Advantage**: Efficient and lightweight transformer architecture
- **High Precision**: Accurate entity boundary detection
- **Multi-component Recognition**: Identifies multiple entities in complex addresses
- **Confidence Scoring**: Provides confidence scores for each extracted entity
- **Fast Inference**: Optimized for real-time applications
- **Robust Handling**: Works with partial or informal address formats
- **Compact Architecture**: TinyBERT's efficient design for deployment
- **Resource Friendly**: Lower computational requirements
## π§ Training Details
- **Dataset**: 300% augmented Indian address dataset
- **Training Strategy**: Fine-tuned from pre-trained TinyBERT
- **Specialization**: Indian address entity extraction
- **Context Length**: 128 tokens
- **Version**: v1.0
- **Framework**: PyTorch + Transformers
- **BIO Tagging**: Uses Begin-Inside-Outside tagging scheme
- **Base Model Advantage**: TinyBERT's efficient architecture and compact size
## π‘ Use Cases
### 1. **Address Parsing & Standardization**
- Parse unstructured address text into components
- Standardize address formats for databases
- Extract specific components for validation
### 2. **Form Auto-completion**
- Auto-fill address forms by extracting components
- Validate address field completeness
- Suggest corrections for incomplete addresses
### 3. **Data Processing & Migration**
- Clean legacy address databases
- Extract structured data from unstructured text
- Migrate addresses between different systems
### 4. **Logistics & Delivery**
- Extract delivery-relevant components
- Validate address completeness for shipping
- Improve address accuracy for last-mile delivery
### 5. **Geocoding Preprocessing**
- Prepare addresses for geocoding APIs
- Extract location components for mapping
- Improve geocoding accuracy with clean components
### 6. **Mobile & Edge Deployment**
- Deploy on mobile devices with limited resources
- Run inference on edge computing devices
- Integrate into lightweight applications
## β‘ Performance Tips
1. **Input Length**: Keep addresses under 128 tokens for optimal performance
2. **Batch Processing**: Process multiple addresses in batches for efficiency
3. **GPU Usage**: Use GPU for faster inference on large datasets
4. **Confidence Filtering**: Filter results by confidence score for higher precision
5. **Text Preprocessing**: Clean input text for better recognition
6. **TinyBERT Advantage**: Model benefits from efficient architecture optimizations
7. **Edge Deployment**: Suitable for mobile and edge computing scenarios
## β οΈ Limitations
- **Language Support**: Primarily optimized for English Indian addresses
- **Regional Variations**: May struggle with highly regional or colloquial formats
- **New Localities**: Performance may vary on very recent developments
- **Complex Formatting**: May have difficulty with highly unstructured text
- **Context Dependency**: Works best with clear address context
## π Entity Mapping
The model uses BIO (Begin-Inside-Outside) tagging scheme:
```json
{
"entity2id": {
"O": 0,
"B-building_name": 1,
"I-building_name": 2,
"B-city": 3,
"I-city": 4,
"B-country": 5,
"I-country": 6,
"B-floor": 7,
"I-floor": 8,
"B-house_details": 9,
"I-house_details": 10,
"B-locality": 11,
"I-locality": 12,
"B-pincode": 13,
"I-pincode": 14,
"B-road": 15,
"I-road": 16,
"B-state": 17,
"I-state": 18,
"B-sub_locality": 19,
"I-sub_locality": 20,
"B-landmarks": 21,
"I-landmarks": 22
},
"id2entity": {
"0": "O",
"1": "B-building_name",
"2": "I-building_name",
"3": "B-city",
"4": "I-city",
"5": "B-country",
"6": "I-country",
"7": "B-floor",
"8": "I-floor",
"9": "B-house_details",
"10": "I-house_details",
"11": "B-locality",
"12": "I-locality",
"13": "B-pincode",
"14": "I-pincode",
"15": "B-road",
"16": "I-road",
"17": "B-state",
"18": "I-state",
"19": "B-sub_locality",
"20": "I-sub_locality",
"21": "B-landmarks",
"22": "I-landmarks"
}
}
```
## π Model Files
- `config.json`: Model configuration and hyperparameters
- `pytorch_model.bin` / `model.safetensors`: Model weights
- `tokenizer.json`: Tokenizer configuration
- `tokenizer_config.json`: Tokenizer settings
- `vocab.txt`: Vocabulary file
- `entity_mappings.json`: Entity type mappings
## π Model Updates
- **Version**: v1.0 (Checkpoint 20793)
- **Last Updated**: 2025-06-19
- **Training Completion**: Based on augmented Indian address dataset
- **Base Model**: TinyBERT for efficient transformer architecture
## π Citation
If you use this model in your research or applications, please cite:
```bibtex
@misc{open-tinybert-indian-address-ner,
title={TinyBERT Indian Address NER Model},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/shiprocket-ai/open-tinybert-indian-address-ner}
}
```
## π Support & Contact
For questions, issues, or feature requests:
- Open an issue in this repository
- Contact: shiprocket-ai team
- Documentation: See usage examples above
## π License
This model is released under the Apache 2.0 License. See LICENSE file for details.
---
*Specialized for Indian address entity recognition - Built with β€οΈ by shiprocket-ai team using TinyBERT* |