{"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"name":"python","version":"3.11.11","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"},"kaggle":{"accelerator":"gpu","dataSources":[{"sourceId":939937,"sourceType":"datasetVersion","datasetId":501529,"isSourceIdPinned":false},{"sourceId":3134515,"sourceType":"datasetVersion","datasetId":1909705},{"sourceId":7802620,"sourceType":"datasetVersion","datasetId":4568839}],"dockerImageVersionId":31041,"isInternetEnabled":true,"language":"python","sourceType":"notebook","isGpuEnabled":true}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"code","source":"import kagglehub\n\n# Download latest version\npath = kagglehub.dataset_download(\"manjilkarki/deepfake-and-real-images\")\n\nprint(\"Path to dataset files:\", path)","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-06-10T15:31:18.406836Z","iopub.execute_input":"2025-06-10T15:31:18.407522Z","iopub.status.idle":"2025-06-10T15:31:18.680240Z","shell.execute_reply.started":"2025-06-10T15:31:18.407496Z","shell.execute_reply":"2025-06-10T15:31:18.679609Z"}},"outputs":[{"name":"stdout","text":"Path to dataset files: /kaggle/input/deepfake-and-real-images\n","output_type":"stream"}],"execution_count":2},{"cell_type":"code","source":"#importing packages\n\nimport tensorflow as tf\nfrom tensorflow.keras.models import Sequential\nfrom tensorflow.keras.layers import *\nfrom tensorflow.keras.utils import image_dataset_from_directory\nimport warnings\n\nwarnings.filterwarnings('ignore')","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-06-10T15:31:18.681454Z","iopub.execute_input":"2025-06-10T15:31:18.682038Z","iopub.status.idle":"2025-06-10T15:31:32.173469Z","shell.execute_reply.started":"2025-06-10T15:31:18.682017Z","shell.execute_reply":"2025-06-10T15:31:32.172917Z"}},"outputs":[{"name":"stderr","text":"2025-06-10 15:31:20.202191: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\nWARNING: All log messages before absl::InitializeLog() is called are written to STDERR\nE0000 00:00:1749569480.391755 35 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\nE0000 00:00:1749569480.448653 35 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n","output_type":"stream"}],"execution_count":3},{"cell_type":"code","source":"#checking for duplications\n\nimport os\ndef get_all_image_paths(folder_path):\n image_paths = []\n for root, dirs, files in os.walk(folder_path):\n for file in files:\n if file.lower().endswith(('.jpg')):\n image_paths.append(os.path.join(root, file))\n return set(image_paths)\n\ntrain_paths = get_all_image_paths('/kaggle/input/deepfake-and-real-images/Dataset/Train')\nval_paths = get_all_image_paths('/kaggle/input/deepfake-and-real-images/Dataset/Validation')\ntest_paths = get_all_image_paths('/kaggle/input/deepfake-and-real-images/Dataset/Test')\n\n# Intersections\nprint(\"Train ∩ Val:\", len(train_paths & val_paths))\nprint(\"Train ∩ Test:\", len(train_paths & test_paths))\nprint(\"Val ∩ Test:\", len(val_paths & test_paths))","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-06-10T16:23:57.798536Z","iopub.execute_input":"2025-06-10T16:23:57.799200Z","iopub.status.idle":"2025-06-10T16:26:17.217938Z","shell.execute_reply.started":"2025-06-10T16:23:57.799179Z","shell.execute_reply":"2025-06-10T16:26:17.217160Z"}},"outputs":[{"name":"stdout","text":"Train ∩ Val: 0\nTrain ∩ Test: 0\nVal ∩ Test: 0\n","output_type":"stream"}],"execution_count":5},{"cell_type":"code","source":"#loading image data\ndef load_1stimage_data(path):\n img_size = (256, 256)\n batch_size = 64\n\n train_ds = tf.keras.preprocessing.image_dataset_from_directory(\n path + \"/Dataset/Train\",\n label_mode=\"binary\", \n image_size=img_size,\n batch_size=batch_size,\n shuffle=True\n )\n\n val_ds = tf.keras.preprocessing.image_dataset_from_directory(\n path + \"/Dataset/Validation\",\n label_mode=\"binary\",\n image_size=img_size,\n batch_size=batch_size,\n shuffle=True \n )\n\n test_ds = tf.keras.preprocessing.image_dataset_from_directory(\n path + \"/Dataset/Test\",\n label_mode=\"binary\",\n image_size=img_size,\n batch_size=batch_size,\n shuffle=False \n )\n\n\n return train_ds,val_ds ,test_ds\n\ntrain,val,test=load_1stimage_data('/kaggle/input/deepfake-and-real-images')\n","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-06-10T16:28:24.592250Z","iopub.execute_input":"2025-06-10T16:28:24.592937Z","iopub.status.idle":"2025-06-10T16:29:18.886089Z","shell.execute_reply.started":"2025-06-10T16:28:24.592913Z","shell.execute_reply":"2025-06-10T16:29:18.885334Z"}},"outputs":[{"name":"stdout","text":"Found 140002 files belonging to 2 classes.\n","output_type":"stream"},{"name":"stderr","text":"I0000 00:00:1749572943.979407 35 gpu_device.cc:2022] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 15513 MB memory: -> device: 0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:04.0, compute capability: 6.0\n","output_type":"stream"},{"name":"stdout","text":"Found 39428 files belonging to 2 classes.\nFound 10905 files belonging to 2 classes.\n","output_type":"stream"}],"execution_count":6},{"cell_type":"code","source":"print(\"Class names and their labels:\", train.class_names)","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-06-10T16:30:06.705924Z","iopub.execute_input":"2025-06-10T16:30:06.706463Z","iopub.status.idle":"2025-06-10T16:30:06.710490Z","shell.execute_reply.started":"2025-06-10T16:30:06.706442Z","shell.execute_reply":"2025-06-10T16:30:06.709625Z"}},"outputs":[{"name":"stdout","text":"Class names and their labels: ['Fake', 'Real']\n","output_type":"stream"}],"execution_count":7},{"cell_type":"code","source":"from tensorflow.keras.models import Sequential\nfrom tensorflow.keras.layers import *\nfrom tensorflow.keras.optimizers import Adam\nfrom tensorflow.keras.regularizers import l2\n\nmodel = Sequential([\n Input((256, 256, 3)),\n Rescaling(1./255),\n RandomFlip(\"horizontal\"),\n RandomRotation(0.1),\n RandomZoom(0.1),\n RandomTranslation(0.1, 0.1),\n RandomContrast(0.1),\n\n Conv2D(64, (3,3), padding='same'),\n BatchNormalization(),\n LeakyReLU(alpha=0.1),\n MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),\n\n Conv2D(64, (3,3), padding='same'),\n BatchNormalization(),\n LeakyReLU(alpha=0.1),\n MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),\n\n Conv2D(128, (3,3), padding='same'),\n BatchNormalization(),\n LeakyReLU(alpha=0.1),\n MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),\n\n Conv2D(128, (3,3), padding='same'),\n BatchNormalization(),\n LeakyReLU(alpha=0.1),\n MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),\n\n Conv2D(256, (3,3), padding='same'),\n BatchNormalization(),\n LeakyReLU(alpha=0.1),\n MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),\n\n Conv2D(256, (3,3), padding='same'),\n BatchNormalization(),\n LeakyReLU(alpha=0.1),\n MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),\n\n Conv2D(256, (3,3), padding='same'),\n BatchNormalization(),\n LeakyReLU(alpha=0.1),\n MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),\n\n Conv2D(512, (3,3), padding='same'),\n BatchNormalization(),\n LeakyReLU(alpha=0.1),\n MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),\n\n Conv2D(512, (3,3), padding='same'),\n BatchNormalization(),\n LeakyReLU(alpha=0.1),\n MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),\n\n Conv2D(512, (3,3), padding='same'),\n BatchNormalization(),\n LeakyReLU(alpha=0.1),\n MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),\n\n Conv2D(512, (3,3), padding='same'),\n BatchNormalization(),\n LeakyReLU(alpha=0.1),\n MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),\n\n GlobalAveragePooling2D(),\n\n Dense(512, kernel_regularizer=l2(1e-4)),\n BatchNormalization(),\n LeakyReLU(alpha=0.1),\n Dropout(0.2),\n\n Dense(128, kernel_regularizer=l2(1e-4)),\n BatchNormalization(),\n LeakyReLU(alpha=0.1),\n Dropout(0.2),\n\n Dense(1, activation='sigmoid')\n])\n","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-06-10T17:15:43.398429Z","iopub.execute_input":"2025-06-10T17:15:43.398875Z","iopub.status.idle":"2025-06-10T17:15:43.615631Z","shell.execute_reply.started":"2025-06-10T17:15:43.398854Z","shell.execute_reply":"2025-06-10T17:15:43.614965Z"}},"outputs":[],"execution_count":12},{"cell_type":"code","source":"model.summary()","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-06-10T17:15:46.119845Z","iopub.execute_input":"2025-06-10T17:15:46.120110Z","iopub.status.idle":"2025-06-10T17:15:46.163687Z","shell.execute_reply.started":"2025-06-10T17:15:46.120090Z","shell.execute_reply":"2025-06-10T17:15:46.162771Z"}},"outputs":[{"output_type":"display_data","data":{"text/plain":"\u001b[1mModel: \"sequential_1\"\u001b[0m\n","text/html":"
Model: \"sequential_1\"\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n│ rescaling_1 (\u001b[38;5;33mRescaling\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ random_flip_1 (\u001b[38;5;33mRandomFlip\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ random_rotation_1 (\u001b[38;5;33mRandomRotation\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ random_zoom_1 (\u001b[38;5;33mRandomZoom\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ random_translation_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n│ (\u001b[38;5;33mRandomTranslation\u001b[0m) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ random_contrast_1 (\u001b[38;5;33mRandomContrast\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_11 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m1,792\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_13 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │\n│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_13 (\u001b[38;5;33mLeakyReLU\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_11 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m, \u001b[38;5;34m128\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_12 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m, \u001b[38;5;34m128\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m36,928\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_14 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m, \u001b[38;5;34m128\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │\n│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_14 (\u001b[38;5;33mLeakyReLU\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m, \u001b[38;5;34m128\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_12 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m, \u001b[38;5;34m64\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_13 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m, \u001b[38;5;34m64\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m73,856\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_15 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m, \u001b[38;5;34m64\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_15 (\u001b[38;5;33mLeakyReLU\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m, \u001b[38;5;34m64\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_13 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_14 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m147,584\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_16 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_16 (\u001b[38;5;33mLeakyReLU\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_14 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_15 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m295,168\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_17 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m1,024\u001b[0m │\n│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_17 (\u001b[38;5;33mLeakyReLU\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_15 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_16 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m590,080\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_18 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m1,024\u001b[0m │\n│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_18 (\u001b[38;5;33mLeakyReLU\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_16 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_17 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m590,080\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_19 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m1,024\u001b[0m │\n│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_19 (\u001b[38;5;33mLeakyReLU\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_17 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2\u001b[0m, \u001b[38;5;34m2\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_18 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2\u001b[0m, \u001b[38;5;34m2\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m1,180,160\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_20 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2\u001b[0m, \u001b[38;5;34m2\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │\n│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_20 (\u001b[38;5;33mLeakyReLU\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2\u001b[0m, \u001b[38;5;34m2\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_18 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_19 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,359,808\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_21 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │\n│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_21 (\u001b[38;5;33mLeakyReLU\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_19 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_20 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,359,808\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_22 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │\n│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_22 (\u001b[38;5;33mLeakyReLU\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_20 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_21 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,359,808\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_23 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │\n│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_23 (\u001b[38;5;33mLeakyReLU\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_21 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ global_average_pooling2d_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n│ (\u001b[38;5;33mGlobalAveragePooling2D\u001b[0m) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ dense_3 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m262,656\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_24 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │\n│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_24 (\u001b[38;5;33mLeakyReLU\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ dropout_2 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ dense_4 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m65,664\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_25 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_25 (\u001b[38;5;33mLeakyReLU\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ dropout_3 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ dense_5 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m129\u001b[0m │\n└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n","text/html":"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n│ rescaling_1 (Rescaling) │ (None, 256, 256, 3) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ random_flip_1 (RandomFlip) │ (None, 256, 256, 3) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ random_rotation_1 (RandomRotation) │ (None, 256, 256, 3) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ random_zoom_1 (RandomZoom) │ (None, 256, 256, 3) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ random_translation_1 │ (None, 256, 256, 3) │ 0 │\n│ (RandomTranslation) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ random_contrast_1 (RandomContrast) │ (None, 256, 256, 3) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_11 (Conv2D) │ (None, 256, 256, 64) │ 1,792 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_13 │ (None, 256, 256, 64) │ 256 │\n│ (BatchNormalization) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_13 (LeakyReLU) │ (None, 256, 256, 64) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_11 (MaxPooling2D) │ (None, 128, 128, 64) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_12 (Conv2D) │ (None, 128, 128, 64) │ 36,928 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_14 │ (None, 128, 128, 64) │ 256 │\n│ (BatchNormalization) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_14 (LeakyReLU) │ (None, 128, 128, 64) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_12 (MaxPooling2D) │ (None, 64, 64, 64) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_13 (Conv2D) │ (None, 64, 64, 128) │ 73,856 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_15 │ (None, 64, 64, 128) │ 512 │\n│ (BatchNormalization) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_15 (LeakyReLU) │ (None, 64, 64, 128) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_13 (MaxPooling2D) │ (None, 32, 32, 128) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_14 (Conv2D) │ (None, 32, 32, 128) │ 147,584 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_16 │ (None, 32, 32, 128) │ 512 │\n│ (BatchNormalization) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_16 (LeakyReLU) │ (None, 32, 32, 128) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_14 (MaxPooling2D) │ (None, 16, 16, 128) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_15 (Conv2D) │ (None, 16, 16, 256) │ 295,168 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_17 │ (None, 16, 16, 256) │ 1,024 │\n│ (BatchNormalization) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_17 (LeakyReLU) │ (None, 16, 16, 256) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_15 (MaxPooling2D) │ (None, 8, 8, 256) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_16 (Conv2D) │ (None, 8, 8, 256) │ 590,080 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_18 │ (None, 8, 8, 256) │ 1,024 │\n│ (BatchNormalization) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_18 (LeakyReLU) │ (None, 8, 8, 256) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_16 (MaxPooling2D) │ (None, 4, 4, 256) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_17 (Conv2D) │ (None, 4, 4, 256) │ 590,080 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_19 │ (None, 4, 4, 256) │ 1,024 │\n│ (BatchNormalization) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_19 (LeakyReLU) │ (None, 4, 4, 256) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_17 (MaxPooling2D) │ (None, 2, 2, 256) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_18 (Conv2D) │ (None, 2, 2, 512) │ 1,180,160 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_20 │ (None, 2, 2, 512) │ 2,048 │\n│ (BatchNormalization) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_20 (LeakyReLU) │ (None, 2, 2, 512) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_18 (MaxPooling2D) │ (None, 1, 1, 512) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_19 (Conv2D) │ (None, 1, 1, 512) │ 2,359,808 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_21 │ (None, 1, 1, 512) │ 2,048 │\n│ (BatchNormalization) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_21 (LeakyReLU) │ (None, 1, 1, 512) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_19 (MaxPooling2D) │ (None, 1, 1, 512) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_20 (Conv2D) │ (None, 1, 1, 512) │ 2,359,808 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_22 │ (None, 1, 1, 512) │ 2,048 │\n│ (BatchNormalization) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_22 (LeakyReLU) │ (None, 1, 1, 512) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_20 (MaxPooling2D) │ (None, 1, 1, 512) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ conv2d_21 (Conv2D) │ (None, 1, 1, 512) │ 2,359,808 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_23 │ (None, 1, 1, 512) │ 2,048 │\n│ (BatchNormalization) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_23 (LeakyReLU) │ (None, 1, 1, 512) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ max_pooling2d_21 (MaxPooling2D) │ (None, 1, 1, 512) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ global_average_pooling2d_1 │ (None, 512) │ 0 │\n│ (GlobalAveragePooling2D) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ dense_3 (Dense) │ (None, 512) │ 262,656 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_24 │ (None, 512) │ 2,048 │\n│ (BatchNormalization) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_24 (LeakyReLU) │ (None, 512) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ dropout_2 (Dropout) │ (None, 512) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ dense_4 (Dense) │ (None, 128) │ 65,664 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ batch_normalization_25 │ (None, 128) │ 512 │\n│ (BatchNormalization) │ │ │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ leaky_re_lu_25 (LeakyReLU) │ (None, 128) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ dropout_3 (Dropout) │ (None, 128) │ 0 │\n├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n│ dense_5 (Dense) │ (None, 1) │ 129 │\n└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Total params: \u001b[0m\u001b[38;5;34m10,338,881\u001b[0m (39.44 MB)\n","text/html":"
Total params: 10,338,881 (39.44 MB)\n\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m10,331,201\u001b[0m (39.41 MB)\n","text/html":"
Trainable params: 10,331,201 (39.41 MB)\n\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m7,680\u001b[0m (30.00 KB)\n","text/html":"
Non-trainable params: 7,680 (30.00 KB)\n\n"},"metadata":{}}],"execution_count":13},{"cell_type":"code","source":"from tensorflow.keras.optimizers import Adam\n\ncustom_adam = Adam(learning_rate=0.0001, beta_1=0.9, beta_2=0.999)\nmodel.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-06-10T17:15:50.238234Z","iopub.execute_input":"2025-06-10T17:15:50.238509Z","iopub.status.idle":"2025-06-10T17:15:50.249244Z","shell.execute_reply.started":"2025-06-10T17:15:50.238490Z","shell.execute_reply":"2025-06-10T17:15:50.248643Z"}},"outputs":[],"execution_count":14},{"cell_type":"code","source":"from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau\n\ncheckpoint=ModelCheckpoint(filepath='best_model.keras',monitor='val_accuracy',verbose=1,save_best_only=True,mode='max')\n\nearlystop=EarlyStopping(monitor='val_accuracy',patience=5,verbose=1,restore_best_weights=True)\n\nlr_scheduler=ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3)\n\n\nmodel.fit(train,epochs=10,validation_data=val,callbacks=[checkpoint, earlystop, lr_scheduler])\n","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-06-10T17:15:53.149962Z","iopub.execute_input":"2025-06-10T17:15:53.150642Z","iopub.status.idle":"2025-06-10T19:06:30.237815Z","shell.execute_reply.started":"2025-06-10T17:15:53.150618Z","shell.execute_reply":"2025-06-10T19:06:30.236921Z"}},"outputs":[{"name":"stdout","text":"Epoch 1/10\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 285ms/step - accuracy: 0.7538 - loss: 0.5324\nEpoch 1: val_accuracy improved from -inf to 0.74475, saving model to best_model.keras\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m677s\u001b[0m 303ms/step - accuracy: 0.7538 - loss: 0.5323 - val_accuracy: 0.7447 - val_loss: 0.8141 - learning_rate: 0.0010\nEpoch 2/10\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 285ms/step - accuracy: 0.9366 - loss: 0.1668\nEpoch 2: val_accuracy improved from 0.74475 to 0.87382, saving model to best_model.keras\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m663s\u001b[0m 303ms/step - accuracy: 0.9366 - loss: 0.1668 - val_accuracy: 0.8738 - val_loss: 0.3413 - learning_rate: 0.0010\nEpoch 3/10\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 285ms/step - accuracy: 0.9527 - loss: 0.1249\nEpoch 3: val_accuracy improved from 0.87382 to 0.89269, saving model to best_model.keras\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m662s\u001b[0m 303ms/step - accuracy: 0.9527 - loss: 0.1249 - val_accuracy: 0.8927 - val_loss: 0.2429 - learning_rate: 0.0010\nEpoch 4/10\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 284ms/step - accuracy: 0.9585 - loss: 0.1079\nEpoch 4: val_accuracy improved from 0.89269 to 0.89830, saving model to best_model.keras\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m662s\u001b[0m 303ms/step - accuracy: 0.9585 - loss: 0.1079 - val_accuracy: 0.8983 - val_loss: 0.2671 - learning_rate: 0.0010\nEpoch 5/10\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 285ms/step - accuracy: 0.9650 - loss: 0.0939\nEpoch 5: val_accuracy improved from 0.89830 to 0.95742, saving model to best_model.keras\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m662s\u001b[0m 303ms/step - accuracy: 0.9650 - loss: 0.0939 - val_accuracy: 0.9574 - val_loss: 0.1177 - learning_rate: 0.0010\nEpoch 6/10\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 285ms/step - accuracy: 0.9678 - loss: 0.0861\nEpoch 6: val_accuracy did not improve from 0.95742\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m662s\u001b[0m 302ms/step - accuracy: 0.9678 - loss: 0.0861 - val_accuracy: 0.9510 - val_loss: 0.1269 - learning_rate: 0.0010\nEpoch 7/10\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 285ms/step - accuracy: 0.9697 - loss: 0.0804\nEpoch 7: val_accuracy did not improve from 0.95742\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m662s\u001b[0m 302ms/step - accuracy: 0.9697 - loss: 0.0804 - val_accuracy: 0.9564 - val_loss: 0.1140 - learning_rate: 0.0010\nEpoch 8/10\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 285ms/step - accuracy: 0.9719 - loss: 0.0746\nEpoch 8: val_accuracy did not improve from 0.95742\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m662s\u001b[0m 302ms/step - accuracy: 0.9719 - loss: 0.0746 - val_accuracy: 0.9483 - val_loss: 0.1405 - learning_rate: 0.0010\nEpoch 9/10\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 285ms/step - accuracy: 0.9734 - loss: 0.0703\nEpoch 9: val_accuracy did not improve from 0.95742\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m662s\u001b[0m 302ms/step - accuracy: 0.9734 - loss: 0.0703 - val_accuracy: 0.9557 - val_loss: 0.1131 - learning_rate: 0.0010\nEpoch 10/10\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 286ms/step - accuracy: 0.9756 - loss: 0.0659\nEpoch 10: val_accuracy did not improve from 0.95742\n\u001b[1m2188/2188\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m664s\u001b[0m 303ms/step - accuracy: 0.9756 - loss: 0.0659 - val_accuracy: 0.9411 - val_loss: 0.1474 - learning_rate: 0.0010\nEpoch 10: early stopping\nRestoring model weights from the end of the best epoch: 5.\n","output_type":"stream"},{"execution_count":15,"output_type":"execute_result","data":{"text/plain":"