File size: 2,629 Bytes
e301914
a3d0103
315e1b8
56f2ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54303d7
56f2ae6
40f4924
56f2ae6
40f4924
56f2ae6
 
 
 
 
dd3f3d1
56f2ae6
 
 
 
 
 
 
 
 
 
2d3e6bc
56f2ae6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---

license: mit
language:
- en
pipeline_tag: text-generation
tags:
- phi
- nlp
- math
- code
- chat
- conversational
inference:
  parameters:
    temperature: 0
widget:
- messages:
  - role: user
    content: How should I explain the Internet?
library_name: transformers
---


# ModernBert Model Card 

[ModernBert Technical Report](https://arxiv.org/pdf/2412.08905)

## Model Summary 

|                         |                                                                               |     
|-------------------------|-------------------------------------------------------------------------------|
| **Developed by**        |  Micro                                                                        |
| **Description**         | `phi-4` is a state-of-the-art open model built upon a blend of synthetic datasets, data from filtered public domain websites, and acquired academic books and Q&A datasets. The goal of this approach was to ensure that small capable models were trained with data focused on high quality and advanced reasoning.<br><br>`phi-4` underwent a rigorous enhancement and alignment process, incorporating both supervised fine-tuning and direct preference optimization to ensure precise instruction adherence and robust safety measures                |
| **Architecture**        | 14B parameters, dense decoder-only Transformer model                          |
| **Inputs**              | Text, best suited for prompts in the chat format                              |
| **Context length**      | 16K tokens                                                                    |
| **GPUs**                | 1920 H100-80G                                                                 |
| **Training time**       | 21 days                                                                       |
| **Training data**       | 9.8T tokens                                                                   |
| **Outputs**             | Generated text in response to input                                           |
| **Dates**               | October 2024 – November 2024                                                  |
| **Status**              | Static model trained on an offline dataset with cutoff dates of June 2024 and earlier for publicly available data                                                                               |
| **Release date**        | March 17, 2025                                                             |
| **License**             | MIT                                                                         |