File size: 35,521 Bytes
4c1bea0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:9432
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: Atherosclerosis and coronary heart disease are examples of what
    type of body system disease?
  sentences:
  - Diseases of the cardiovascular system are common and may be life threatening.
    Examples include atherosclerosis and coronary heart disease. A healthy lifestyle
    can reduce the risk of such diseases developing. This includes avoiding smoking,
    getting regular physical activity, and maintaining a healthy percent of body fat.
  - Osmosis Osmosis is the diffusion of water through a semipermeable membrane according
    to the concentration gradient of water across the membrane. Whereas diffusion
    transports material across membranes and within cells, osmosis transports only
    water across a membrane and the membrane limits the diffusion of solutes in the
    water. Osmosis is a special case of diffusion. Water, like other substances, moves
    from an area of higher concentration to one of lower concentration. Imagine a
    beaker with a semipermeable membrane, separating the two sides or halves (Figure
    3.21). On both sides of the membrane, the water level is the same, but there are
    different concentrations on each side of a dissolved substance, or solute, that
    cannot cross the membrane. If the volume of the water is the same, but the concentrations
    of solute are different, then there are also different concentrations of water,
    the solvent, on either side of the membrane.
  - Circadian rhythms are regular changes in biology or behavior that occur in a 24-hour
    cycle. In humans, for example, blood pressure and body temperature change in a
    regular way throughout each 24-hour day. Animals may eat and drink at certain
    times of day as well. Humans have daily cycles of behavior, too. Most people start
    to get sleepy after dark and have a hard time sleeping when it is light outside.
    In many species, including humans, circadian rhythms are controlled by a tiny
    structure called the biological clock . This structure is located in a gland at
    the base of the brain. The biological clock sends signals to the body. The signals
    cause regular changes in behavior and body processes. The amount of light entering
    the eyes helps control the biological clock. The clock causes changes that repeat
    every 24 hours.
- source_sentence: How does a cell's membrane keep extracellular materials from mixing
    with it's internal components?
  sentences:
  - We know that the Universe is expanding. Astronomers have wondered if it is expanding
    fast enough to escape the pull of gravity. Would the Universe just expand forever?
    If it could not escape the pull of gravity, would it someday start to contract?
    This means it would eventually get squeezed together in a big crunch. This is
    the opposite of the Big Bang.
  - Physical properties that do not depend on the amount of substance present are
    called intensive properties . Intensive properties do not change with changes
    of size, shape, or scale. Examples of intensive properties are as follows in the
    Table below .
  - CHAPTER REVIEW 3.1 The Cell Membrane The cell membrane provides a barrier around
    the cell, separating its internal components from the extracellular environment.
    It is composed of a phospholipid bilayer, with hydrophobic internal lipid “tails”
    and hydrophilic external phosphate “heads.  Various membrane proteins are scattered
    throughout the bilayer, both inserted within it and attached to it peripherally.
    The cell membrane is selectively permeable, allowing only a limited number of
    materials to diffuse through its lipid bilayer. All materials that cross the membrane
    do so using passive (non energy-requiring) or active (energy-requiring) transport
    processes. During passive transport, materials move by simple diffusion or by
    facilitated diffusion through the membrane, down their concentration gradient.
    Water passes through the membrane in a diffusion process called osmosis. During
    active transport, energy is expended to assist material movement across the membrane
    in a direction against their concentration gradient. Active transport may take
    place with the help of protein pumps or through the use of vesicles.
- source_sentence: An infection may be intracellular or extracellular, depending on
    this?
  sentences:
  - '22.3 Magnetic Fields and Magnetic Field Lines • Magnetic fields can be pictorially
    represented by magnetic field lines, the properties of which are as follows: 1.
    The field is tangent to the magnetic field line. Field strength is proportional
    to the line density. Field lines cannot cross. Field lines are continuous loops.'
  - Figure 24.13 The lifecycle of an ascomycete is characterized by the production
    of asci during the sexual phase. The haploid phase is the predominant phase of
    the life cycle.
  - Caffeine is an example of a psychoactive drug. It is found in coffee and many
    other products (see Table below ). Caffeine is a central nervous system stimulant
    . Like other stimulant drugs, it makes you feel more awake and alert. Other psychoactive
    drugs include alcohol, nicotine, and marijuana. Each has a different effect on
    the central nervous system. Alcohol, for example, is a depressant . It has the
    opposite effects of a stimulant like caffeine.
- source_sentence: What does water treatment do to water?
  sentences:
  - Some solutes, such as sodium acetate, do not recrystallize easily. Suppose an
    exactly saturated solution of sodium acetate is prepared at 50°C. As it cools
    back to room temperature, no crystals appear in the solution, even though the
    solubility of sodium acetate is lower at room temperature. A supersaturated solution
    is a solution that contains more than the maximum amount of solute that is capable
    of being dissolved at a given temperature. The recrystallization of the excess
    dissolved solute in a supersaturated solution can be initiated by the addition
    of a tiny crystal of solute, called a seed crystal. The seed crystal provides
    a nucleation site on which the excess dissolved crystals can begin to grow. Recrystallization
    from a supersaturated solution is typically very fast.
  - Figure 23.13, the esophagus runs a mainly straight route through the mediastinum
    of the thorax. To enter the abdomen, the esophagus penetrates the diaphragm through
    an opening called the esophageal hiatus.
  - Water treatment is a series of processes that remove unwanted substances from
    water. More processes are needed to purify water for drinking than for other uses.
- source_sentence: 'There are only four possible bases that make up each dna nucleotide:
    adenine, guanine, thymine, and?'
  sentences:
  - Metamorphism. This long word means “to change form.  A rock undergoes metamorphism
    if it is exposed to extreme heat and pressure within the crust. With metamorphism
    , the rock does not melt all the way. The rock changes due to heat and pressure.
    A metamorphic rock may have a new mineral composition and/or texture.
  - Forest and Kim Starr (Flickr:Starr Environmental). Secondary succession occurs
    when nature reclaims areas formerly occupied by life . CC BY 2.0.
  - 'The only difference between each nucleotide is the identity of the base. There
    are only four possible bases that make up each DNA nucleotide: adenine (A), guanine
    (G), thymine (T), and cytosine (C).'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: MNLP M3 Encoder SciQA
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 384
      type: dim_384
    metrics:
    - type: cosine_accuracy@1
      value: 0.6120114394661582
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8017159199237369
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8541468064823642
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9275500476644424
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6120114394661582
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.267238639974579
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17082936129647283
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09275500476644424
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6120114394661582
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8017159199237369
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8541468064823642
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9275500476644424
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7690377395004954
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7184669450875366
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7210073638258574
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.5977121067683508
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7912297426120114
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8398474737845567
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9151572926596759
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5977121067683508
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26374324753733713
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16796949475691134
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09151572926596759
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5977121067683508
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7912297426120114
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8398474737845567
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9151572926596759
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7558547240171754
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7049529408204341
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7084736712852033
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 192
      type: dim_192
    metrics:
    - type: cosine_accuracy@1
      value: 0.5891325071496664
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.778836987607245
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8331744518589133
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.90371782650143
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5891325071496664
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.259612329202415
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16663489037178267
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.090371782650143
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5891325071496664
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.778836987607245
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8331744518589133
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.90371782650143
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7467179313530818
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6964694266648511
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7004357679049269
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.5662535748331744
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7626310772163966
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8265014299332698
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8913250714966635
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5662535748331744
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.25421035907213213
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16530028598665394
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08913250714966635
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5662535748331744
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7626310772163966
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8265014299332698
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8913250714966635
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7275517192718437
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6752375656331816
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6793502491099088
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 96
      type: dim_96
    metrics:
    - type: cosine_accuracy@1
      value: 0.551954242135367
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7416587225929456
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8093422306959008
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8732125834127741
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.551954242135367
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24721957419764853
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1618684461391802
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08732125834127741
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.551954242135367
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7416587225929456
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8093422306959008
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8732125834127741
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7119774118711802
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.660333348464903
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6648689218069684
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.5166825548141086
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7044804575786463
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7683508102955195
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8369876072449952
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5166825548141086
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2348268191928821
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1536701620591039
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08369876072449953
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5166825548141086
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7044804575786463
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7683508102955195
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8369876072449952
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6755211859192654
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6239059875618503
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6292715088820261
      name: Cosine Map@100
---

# MNLP M3 Encoder SciQA

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'There are only four possible bases that make up each dna nucleotide: adenine, guanine, thymine, and?',
    'The only difference between each nucleotide is the identity of the base. There are only four possible bases that make up each DNA nucleotide: adenine (A), guanine (G), thymine (T), and cytosine (C).',
    'Metamorphism. This long word means “to change form. “ A rock undergoes metamorphism if it is exposed to extreme heat and pressure within the crust. With metamorphism , the rock does not melt all the way. The rock changes due to heat and pressure. A metamorphic rock may have a new mineral composition and/or texture.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_384`, `dim_256`, `dim_192`, `dim_128`, `dim_96` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_384   | dim_256    | dim_192    | dim_128    | dim_96    | dim_64     |
|:--------------------|:----------|:-----------|:-----------|:-----------|:----------|:-----------|
| cosine_accuracy@1   | 0.612     | 0.5977     | 0.5891     | 0.5663     | 0.552     | 0.5167     |
| cosine_accuracy@3   | 0.8017    | 0.7912     | 0.7788     | 0.7626     | 0.7417    | 0.7045     |
| cosine_accuracy@5   | 0.8541    | 0.8398     | 0.8332     | 0.8265     | 0.8093    | 0.7684     |
| cosine_accuracy@10  | 0.9276    | 0.9152     | 0.9037     | 0.8913     | 0.8732    | 0.837      |
| cosine_precision@1  | 0.612     | 0.5977     | 0.5891     | 0.5663     | 0.552     | 0.5167     |
| cosine_precision@3  | 0.2672    | 0.2637     | 0.2596     | 0.2542     | 0.2472    | 0.2348     |
| cosine_precision@5  | 0.1708    | 0.168      | 0.1666     | 0.1653     | 0.1619    | 0.1537     |
| cosine_precision@10 | 0.0928    | 0.0915     | 0.0904     | 0.0891     | 0.0873    | 0.0837     |
| cosine_recall@1     | 0.612     | 0.5977     | 0.5891     | 0.5663     | 0.552     | 0.5167     |
| cosine_recall@3     | 0.8017    | 0.7912     | 0.7788     | 0.7626     | 0.7417    | 0.7045     |
| cosine_recall@5     | 0.8541    | 0.8398     | 0.8332     | 0.8265     | 0.8093    | 0.7684     |
| cosine_recall@10    | 0.9276    | 0.9152     | 0.9037     | 0.8913     | 0.8732    | 0.837      |
| **cosine_ndcg@10**  | **0.769** | **0.7559** | **0.7467** | **0.7276** | **0.712** | **0.6755** |
| cosine_mrr@10       | 0.7185    | 0.705      | 0.6965     | 0.6752     | 0.6603    | 0.6239     |
| cosine_map@100      | 0.721     | 0.7085     | 0.7004     | 0.6794     | 0.6649    | 0.6293     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 9,432 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 7 tokens</li><li>mean: 18.15 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 94.56 tokens</li><li>max: 256 tokens</li></ul> |
* Samples:
  | anchor                                                                                           | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
  |:-------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is the term for atherosclerosis of arteries that supply the heart muscle?</code>      | <code>Atherosclerosis of arteries that supply the heart muscle is called coronary heart disease . This disease may or may not have symptoms, such as chest pain. As the disease progresses, there is an increased risk of heart attack. A heart attack occurs when the blood supply to part of the heart muscle is blocked and cardiac muscle fibers die. Coronary heart disease is the leading cause of death of adults in the United States.</code>                              |
  | <code>What term describes a drug that has an effect on the central nervous system?</code>        | <code>Caffeine is an example of a psychoactive drug. It is found in coffee and many other products (see Table below ). Caffeine is a central nervous system stimulant . Like other stimulant drugs, it makes you feel more awake and alert. Other psychoactive drugs include alcohol, nicotine, and marijuana. Each has a different effect on the central nervous system. Alcohol, for example, is a depressant . It has the opposite effects of a stimulant like caffeine.</code> |
  | <code>What scale is used to succinctly communicate the acidity or basicity of a solution?</code> | <code>The pH scale is used to succinctly communicate the acidity or basicity of a solution.</code>                                                                                                                                                                                                                                                                                                                                                                                 |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          384,
          256,
          192,
          128,
          96,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | dim_384_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_192_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_96_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:---------------------:|
| 0.5424 | 10   | 22.4049       | -                      | -                      | -                      | -                      | -                     | -                     |
| 1.0    | 19   | -             | 0.7424                 | 0.7315                 | 0.7263                 | 0.7093                 | 0.6919                | 0.6575                |
| 1.0542 | 20   | 16.6616       | -                      | -                      | -                      | -                      | -                     | -                     |
| 1.5966 | 30   | 16.8367       | -                      | -                      | -                      | -                      | -                     | -                     |
| 2.0    | 38   | -             | 0.7612                 | 0.7520                 | 0.7431                 | 0.7261                 | 0.7097                | 0.6708                |
| 2.1085 | 40   | 12.8169       | -                      | -                      | -                      | -                      | -                     | -                     |
| 2.6508 | 50   | 13.7826       | -                      | -                      | -                      | -                      | -                     | -                     |
| 3.0    | 57   | -             | 0.7675                 | 0.7548                 | 0.7477                 | 0.7274                 | 0.7125                | 0.6756                |
| 3.1627 | 60   | 12.4455       | -                      | -                      | -                      | -                      | -                     | -                     |
| 3.7051 | 70   | 12.2968       | -                      | -                      | -                      | -                      | -                     | -                     |
| 3.8136 | 72   | -             | 0.7690                 | 0.7559                 | 0.7467                 | 0.7276                 | 0.7120                | 0.6755                |


### Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.4.1
- Transformers: 4.51.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.6.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->