File size: 15,999 Bytes
aeec796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb362658c10>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7fb3626553f0>"
    },
    "verbose": 1,
    "policy_kwargs": {
        ":type:": "<class 'dict'>",
        ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
        "log_std_init": -2,
        "ortho_init": false,
        "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
        "optimizer_kwargs": {
            "alpha": 0.99,
            "eps": 1e-05,
            "weight_decay": 0
        }
    },
    "observation_space": {
        ":type:": "<class 'gym.spaces.dict.Dict'>",
        ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
        "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
        "dtype": "float32",
        "_shape": [
            3
        ],
        "low": "[-1. -1. -1.]",
        "high": "[1. 1. 1.]",
        "bounded_below": "[ True  True  True]",
        "bounded_above": "[ True  True  True]",
        "_np_random": null
    },
    "n_envs": 4,
    "num_timesteps": 1000000,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1676160844038666648,
    "learning_rate": 0.00096,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA09PgPoptLbwuLQY/09PgPoptLbwuLQY/09PgPoptLbwuLQY/09PgPoptLbwuLQY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAM07PP0Kk2z/YTUw/MXMbP/e1sL8WYuY+K0dwv8s2oT9HIaC/T/jLv1IFxr8uuKY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADT0+A+im0tvC4tBj9+/4c9QwGSunrfXT3T0+A+im0tvC4tBj9+/4c9QwGSunrfXT3T0+A+im0tvC4tBj9+/4c9QwGSunrfXT3T0+A+im0tvC4tBj9+/4c9QwGSunrfXT2UaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 0.4391161 -0.0105852  0.5241269]\n [ 0.4391161 -0.0105852  0.5241269]\n [ 0.4391161 -0.0105852  0.5241269]\n [ 0.4391161 -0.0105852  0.5241269]]",
        "desired_goal": "[[ 1.619574    1.7159503   0.7980628 ]\n [ 0.60722643 -1.3805531   0.4499671 ]\n [-0.93858594  1.2594846  -1.2510155 ]\n [-1.5935153  -1.5470374   1.3024957 ]]",
        "observation": "[[ 0.4391161  -0.0105852   0.5241269   0.06640528 -0.00111393  0.0541682 ]\n [ 0.4391161  -0.0105852   0.5241269   0.06640528 -0.00111393  0.0541682 ]\n [ 0.4391161  -0.0105852   0.5241269   0.06640528 -0.00111393  0.0541682 ]\n [ 0.4391161  -0.0105852   0.5241269   0.06640528 -0.00111393  0.0541682 ]]"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAR++bvLUI5r0ifhE+l6tnvUYo471thHs+dsT3vX2PBr0C8v499VA7PVfKl71NmjY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]",
        "desired_goal": "[[-0.01903499 -0.11232129  0.14208272]\n [-0.05656013 -0.11091666  0.24562235]\n [-0.12098019 -0.03285168  0.12448503]\n [ 0.0457315  -0.0741164   0.17832299]]",
        "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"
    },
    "_episode_num": 0,
    "use_sde": true,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICI7LuKmB9L+UhpRSlIwBbJRLMowBdJRHQK1u90/4Zdh1fZQoaAZoCWgPQwh1kNeDSbH+v5SGlFKUaBVLMmgWR0CtbnDPWxyGdX2UKGgGaAloD0MIKV/QQgLG8r+UhpRSlGgVSzJoFkdArW3rRnezlnV9lChoBmgJaA9DCJ5haksdJPu/lIaUUpRoFUsyaBZHQK1taN5MURF1fZQoaAZoCWgPQwgWpBmLprPwv5SGlFKUaBVLMmgWR0CtcSim/FisdX2UKGgGaAloD0MI/wWCABl6+7+UhpRSlGgVSzJoFkdArXCid6LOzXV9lChoBmgJaA9DCA5o6Qq2Efi/lIaUUpRoFUsyaBZHQK1wHSKm8/V1fZQoaAZoCWgPQwhZGY18XrH/v5SGlFKUaBVLMmgWR0Ctb5slb/wRdX2UKGgGaAloD0MIqFMe3QhL+b+UhpRSlGgVSzJoFkdArXNcL4N7SnV9lChoBmgJaA9DCHZSX5Z2KvO/lIaUUpRoFUsyaBZHQK1y1gb6xgR1fZQoaAZoCWgPQwj6Cz1i9Fz9v5SGlFKUaBVLMmgWR0CtclC0F8ohdX2UKGgGaAloD0MIiJ//Hrz26r+UhpRSlGgVSzJoFkdArXHOjRD1G3V9lChoBmgJaA9DCAmLijid5O2/lIaUUpRoFUsyaBZHQK11k9lEqlR1fZQoaAZoCWgPQwjLhcq/ltf2v5SGlFKUaBVLMmgWR0CtdQ20Re1KdX2UKGgGaAloD0MIyO9t+rPf9b+UhpRSlGgVSzJoFkdArXSIH7gsLHV9lChoBmgJaA9DCFCLwcO0bwHAlIaUUpRoFUsyaBZHQK10BkELYwt1fZQoaAZoCWgPQwjs3/WZs77nv5SGlFKUaBVLMmgWR0Ctd9qp97WvdX2UKGgGaAloD0MIWksBaf8D4r+UhpRSlGgVSzJoFkdArXdTVSXMQnV9lChoBmgJaA9DCPylRX2Se/m/lIaUUpRoFUsyaBZHQK12zMlC1JF1fZQoaAZoCWgPQwhoCTICKhz9v5SGlFKUaBVLMmgWR0CtdkmP5pJxdX2UKGgGaAloD0MIMzUJ3pCG/L+UhpRSlGgVSzJoFkdArXkW6shgV3V9lChoBmgJaA9DCCzxgLIpV+e/lIaUUpRoFUsyaBZHQK14j4KQaJh1fZQoaAZoCWgPQwhzuFZ72Av6v5SGlFKUaBVLMmgWR0CteAkVeruIdX2UKGgGaAloD0MIUZ/kDptI4b+UhpRSlGgVSzJoFkdArXeFuJk5InV9lChoBmgJaA9DCGXequtQTfG/lIaUUpRoFUsyaBZHQK16XfsNUfh1fZQoaAZoCWgPQwiAJy1cVqHwv5SGlFKUaBVLMmgWR0CtedaJIlMRdX2UKGgGaAloD0MI+MPPfw++BMCUhpRSlGgVSzJoFkdArXlQAEMb33V9lChoBmgJaA9DCE4mbhXEAPO/lIaUUpRoFUsyaBZHQK14zLlmvnt1fZQoaAZoCWgPQwgSZ0XURB/wv5SGlFKUaBVLMmgWR0Cte6DCHh0hdX2UKGgGaAloD0MIqByTxf3H4r+UhpRSlGgVSzJoFkdArXsZPO6d2HV9lChoBmgJaA9DCGqF6XsNYQDAlIaUUpRoFUsyaBZHQK16krtmcvx1fZQoaAZoCWgPQwg486s5QLD5v5SGlFKUaBVLMmgWR0Cteg90q6OHdX2UKGgGaAloD0MIvvkNEw1yA8CUhpRSlGgVSzJoFkdArXz5r56+nXV9lChoBmgJaA9DCFjJx+4CJei/lIaUUpRoFUsyaBZHQK18cf0VafV1fZQoaAZoCWgPQwiSdqOP+UD8v5SGlFKUaBVLMmgWR0Cte+sjeKsNdX2UKGgGaAloD0MIwOyePCwU8r+UhpRSlGgVSzJoFkdArXtn1pTMq3V9lChoBmgJaA9DCMZNDTSfs/C/lIaUUpRoFUsyaBZHQK1+NShJyyV1fZQoaAZoCWgPQwjj32dcOBD5v5SGlFKUaBVLMmgWR0Ctfa2/BWPtdX2UKGgGaAloD0MICB10CYfe8b+UhpRSlGgVSzJoFkdArX0nOdGy5nV9lChoBmgJaA9DCFxaDYl7DAPAlIaUUpRoFUsyaBZHQK18o/HHWBl1fZQoaAZoCWgPQwiob5nTZfH1v5SGlFKUaBVLMmgWR0Ctf4LWZqmCdX2UKGgGaAloD0MI0jb+RGWD/b+UhpRSlGgVSzJoFkdArX77c2zfJnV9lChoBmgJaA9DCOcaZmg8kf2/lIaUUpRoFUsyaBZHQK1+dN/OMVF1fZQoaAZoCWgPQwh0Jm2q7hH6v5SGlFKUaBVLMmgWR0CtffHL7oB8dX2UKGgGaAloD0MIpTDvcaZpBcCUhpRSlGgVSzJoFkdArYDMkpqh13V9lChoBmgJaA9DCAfuQJ3yaOu/lIaUUpRoFUsyaBZHQK2ARQ/oq1B1fZQoaAZoCWgPQwhBLnHkgUgGwJSGlFKUaBVLMmgWR0Ctf75+6RQrdX2UKGgGaAloD0MI4xx1dFwN/b+UhpRSlGgVSzJoFkdArX87V+Zw43V9lChoBmgJaA9DCB5Pyw9cJQDAlIaUUpRoFUsyaBZHQK2CBc0tRN11fZQoaAZoCWgPQwiWI2Qgz271v5SGlFKUaBVLMmgWR0CtgX5byH2zdX2UKGgGaAloD0MIh8PSwI/qBsCUhpRSlGgVSzJoFkdArYD318LKFXV9lChoBmgJaA9DCDbmdcQhG/K/lIaUUpRoFUsyaBZHQK2AdGHYYix1fZQoaAZoCWgPQwiMoZxoV2EBwJSGlFKUaBVLMmgWR0Ctgz9HlOoHdX2UKGgGaAloD0MIGQEVjiDV+r+UhpRSlGgVSzJoFkdArYK3xx1gY3V9lChoBmgJaA9DCPTcQlci0OG/lIaUUpRoFUsyaBZHQK2CMTY/Vy51fZQoaAZoCWgPQwiX5IBdTV7/v5SGlFKUaBVLMmgWR0Ctga3U6PsBdX2UKGgGaAloD0MI0qjAyTbw57+UhpRSlGgVSzJoFkdArYSH/zasZHV9lChoBmgJaA9DCO4JEtvdA/i/lIaUUpRoFUsyaBZHQK2EAHUtqYZ1fZQoaAZoCWgPQwhcGyrG+dvzv5SGlFKUaBVLMmgWR0Ctg3nWattAdX2UKGgGaAloD0MIEcXkDTAz8L+UhpRSlGgVSzJoFkdArYL2avzOHHV9lChoBmgJaA9DCFiOkIE8u/i/lIaUUpRoFUsyaBZHQK2FwRJVbRp1fZQoaAZoCWgPQwhLyAc9m5X5v5SGlFKUaBVLMmgWR0CthTl6iTMadX2UKGgGaAloD0MIzEI7p1mg7r+UhpRSlGgVSzJoFkdArYSy57PY4HV9lChoBmgJaA9DCAcKvJNPj/m/lIaUUpRoFUsyaBZHQK2EL15B1Ld1fZQoaAZoCWgPQwiJRQw7jIkAwJSGlFKUaBVLMmgWR0CthwIAGSpzdX2UKGgGaAloD0MIpG/SNCga6L+UhpRSlGgVSzJoFkdArYZ6oKlYU3V9lChoBmgJaA9DCOxrXWqEfvq/lIaUUpRoFUsyaBZHQK2F9A6dUbV1fZQoaAZoCWgPQwhMbD6uDdUBwJSGlFKUaBVLMmgWR0CthXDawljWdX2UKGgGaAloD0MIkX2QZcFE7r+UhpRSlGgVSzJoFkdArYiBU5uIh3V9lChoBmgJaA9DCIYfnE8da/e/lIaUUpRoFUsyaBZHQK2H+emvW6N1fZQoaAZoCWgPQwhsfCb75yn3v5SGlFKUaBVLMmgWR0Cth3Nga3qidX2UKGgGaAloD0MImX6JeOscB8CUhpRSlGgVSzJoFkdArYbxQxesxXV9lChoBmgJaA9DCGTnbWx2JO+/lIaUUpRoFUsyaBZHQK2JvdzGPxR1fZQoaAZoCWgPQwg26iEa3UHrv5SGlFKUaBVLMmgWR0CtiTZqdpZfdX2UKGgGaAloD0MIG2SSkbOw8r+UhpRSlGgVSzJoFkdArYiv029+PXV9lChoBmgJaA9DCAwiUtMu5va/lIaUUpRoFUsyaBZHQK2ILJbt7a91fZQoaAZoCWgPQwh720yFeOT5v5SGlFKUaBVLMmgWR0CtiwkHlfZ3dX2UKGgGaAloD0MIXWqEfqYe/b+UhpRSlGgVSzJoFkdArYqBmI0qIHV9lChoBmgJaA9DCGEXRQ98jOq/lIaUUpRoFUsyaBZHQK2J+uez2OB1fZQoaAZoCWgPQwjOUx1yM9zzv5SGlFKUaBVLMmgWR0CtiXdUsFt9dX2UKGgGaAloD0MIM8FwrmFmAcCUhpRSlGgVSzJoFkdArYyQUzsQd3V9lChoBmgJaA9DCKqezD/6Jvm/lIaUUpRoFUsyaBZHQK2MCb7TDwZ1fZQoaAZoCWgPQwguVWmLa7z/v5SGlFKUaBVLMmgWR0Cti4Q53kgfdX2UKGgGaAloD0MIMh8Q6Eza3b+UhpRSlGgVSzJoFkdArYsBUrCm/HV9lChoBmgJaA9DCB+94T5y6wDAlIaUUpRoFUsyaBZHQK2OsWsRxtJ1fZQoaAZoCWgPQwjsFKsGYY4AwJSGlFKUaBVLMmgWR0Ctjisw1zhhdX2UKGgGaAloD0MIopkn1xSI8r+UhpRSlGgVSzJoFkdArY2lmcvugHV9lChoBmgJaA9DCCy7YHDNHfi/lIaUUpRoFUsyaBZHQK2NI2CNCJJ1fZQoaAZoCWgPQwjNd/ATBxDxv5SGlFKUaBVLMmgWR0CtkMe717IDdX2UKGgGaAloD0MI14S0xqBT8r+UhpRSlGgVSzJoFkdArZBBlOGj9HV9lChoBmgJaA9DCKlorP2d7e6/lIaUUpRoFUsyaBZHQK2PvDiOvMd1fZQoaAZoCWgPQwguAmN9A1P2v5SGlFKUaBVLMmgWR0CtjzoikftAdX2UKGgGaAloD0MIt+9Rf71C/7+UhpRSlGgVSzJoFkdArZLn0NBnjHV9lChoBmgJaA9DCIBHVKhurvW/lIaUUpRoFUsyaBZHQK2SYPikwex1fZQoaAZoCWgPQwhMGM3K9iHtv5SGlFKUaBVLMmgWR0Ctkdspw0fpdX2UKGgGaAloD0MIy/Yhb7maAcCUhpRSlGgVSzJoFkdArZFYkPczqXV9lChoBmgJaA9DCGIVb2Qeufq/lIaUUpRoFUsyaBZHQK2VNlp48lp1fZQoaAZoCWgPQwgMB0KygCkBwJSGlFKUaBVLMmgWR0CtlLAJLM9sdX2UKGgGaAloD0MIOe//44QJ/L+UhpRSlGgVSzJoFkdArZQqqKgqVnV9lChoBmgJaA9DCL1UbMzrCPy/lIaUUpRoFUsyaBZHQK2TqFTvRZ51ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 31250,
    "n_steps": 8,
    "gamma": 0.99,
    "gae_lambda": 0.9,
    "ent_coef": 0.0,
    "vf_coef": 0.4,
    "max_grad_norm": 0.5,
    "normalize_advantage": false
}