File size: 3,485 Bytes
1ae6ae2 0cb23c8 d8aebad 0cb23c8 d8aebad 57169a9 1ae6ae2 57169a9 d8aebad 57169a9 d8aebad 1ae6ae2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
base_model: jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP
inference: false
library_name: transformers
merged_models:
- jsfs11/TemptressTensor-10.7B-v0.1a
- froggeric/WestLake-10.7B-v2
pipeline_tag: text-generation
quantized_by: Suparious
tags:
- 4-bit
- AWQ
- text-generation
- autotrain_compatible
- endpoints_compatible
- merge
- mergekit
- lazymergekit
- jsfs11/TemptressTensor-10.7B-v0.1a
- froggeric/WestLake-10.7B-v2
---
# jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP AWQ
- Model creator: [jsfs11](https://huggingface.co/jsfs11)
- Original model: [WestTemptressTensor-10.7B-v0.2a-SLERP](https://huggingface.co/jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP)
## Model Summary
WestTemptressTensor-10.7B-v0.2a-SLERP is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [jsfs11/TemptressTensor-10.7B-v0.1a](https://huggingface.co/jsfs11/TemptressTensor-10.7B-v0.1a)
* [froggeric/WestLake-10.7B-v2](https://huggingface.co/froggeric/WestLake-10.7B-v2)
## How to use
### Install the necessary packages
```bash
pip install --upgrade autoawq autoawq-kernels
```
### Example Python code
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
model_path = "solidrust/WestTemptressTensor-10.7B-v0.2a-SLERP-AWQ"
system_message = "You are WestTemptressTensor-10.7B-v0.2a-SLERP, incarnated as a powerful AI. You were created by jsfs11."
# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
streamer = TextStreamer(tokenizer,
skip_prompt=True,
skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
return_tensors='pt').input_ids.cuda()
# Generate output
generation_output = model.generate(tokens,
streamer=streamer,
max_new_tokens=512)
```
### About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
It is supported by:
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
|