songhieng commited on
Commit
974b711
·
verified ·
1 Parent(s): 09c7055

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - url-phishing-detection
6
+ - tinybert
7
+ - sequence-classification
8
+ datasets:
9
+ - custom
10
+ metrics:
11
+ - accuracy
12
+ - f1
13
+ ---
14
+
15
+ # TinyBERT for URL Phishing Detection
16
+
17
+ This model is fine-tuned from huawei-noah/TinyBERT_General_4L_312D to detect phishing URLs.
18
+
19
+ ## Model description
20
+
21
+ The model is a fine-tuned version of TinyBERT, specifically trained to classify URLs as either legitimate or phishing.
22
+
23
+ ## Intended uses & limitations
24
+
25
+ This model is intended to be used for detecting phishing URLs. It takes a URL as input and outputs a prediction of whether the URL is legitimate or phishing.
26
+
27
+ ## Training data
28
+
29
+ The model was trained on a combination of:
30
+ - Legitimate URLs from the Majestic Million dataset
31
+ - Phishing URLs from phishing-links-ACTIVE.txt and phishing-links-INACTIVE.txt
32
+
33
+ ## Training procedure
34
+
35
+ The model was fine-tuned using the Hugging Face Transformers library with the following parameters:
36
+ - Learning rate: 5e-5
37
+ - Batch size: 16
38
+ - Number of epochs: 3
39
+ - Weight decay: 0.01
40
+
41
+ ## Evaluation results
42
+
43
+ The model was evaluated on a test set consisting of both legitimate and phishing URLs.
44
+
45
+ ## Usage
46
+
47
+ ```python
48
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
49
+ import torch
50
+
51
+ # Load model and tokenizer
52
+ tokenizer = AutoTokenizer.from_pretrained("songhieng/TinyBERT-URL-Detection-1.0")
53
+ model = AutoModelForSequenceClassification.from_pretrained("songhieng/TinyBERT-URL-Detection-1.0")
54
+
55
+ # Prepare URL for classification
56
+ url = "https://example.com"
57
+ inputs = tokenizer(url, return_tensors="pt", truncation=True, padding=True, max_length=128)
58
+
59
+ # Make prediction
60
+ with torch.no_grad():
61
+ outputs = model(**inputs)
62
+ predictions = torch.softmax(outputs.logits, dim=1)
63
+ label = torch.argmax(predictions, dim=1).item()
64
+
65
+ # Output result
66
+ result = "phishing" if label == 1 else "legitimate"
67
+ confidence = predictions[0][label].item()
68
+ print(f"URL: {url}")
69
+ print(f"Prediction: {result}")
70
+ print(f"Confidence: {confidence:.4f}")
71
+ ```
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "cell": {},
7
+ "classifier_dropout": null,
8
+ "emb_size": 312,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 312,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1200,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 4,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "pre_trained": "",
22
+ "problem_type": "single_label_classification",
23
+ "structure": [],
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.52.4",
26
+ "type_vocab_size": 2,
27
+ "use_cache": true,
28
+ "vocab_size": 30522
29
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d3ecc287eed1118eb9c7adeab30f62925dcfb3986317ad0367e638ff7897624
3
+ size 57411808
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff