Upload folder using huggingface_hub
Browse files- README.md +71 -0
- config.json +29 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- url-phishing-detection
|
6 |
+
- tinybert
|
7 |
+
- sequence-classification
|
8 |
+
datasets:
|
9 |
+
- custom
|
10 |
+
metrics:
|
11 |
+
- accuracy
|
12 |
+
- f1
|
13 |
+
---
|
14 |
+
|
15 |
+
# TinyBERT for URL Phishing Detection
|
16 |
+
|
17 |
+
This model is fine-tuned from huawei-noah/TinyBERT_General_4L_312D to detect phishing URLs.
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
The model is a fine-tuned version of TinyBERT, specifically trained to classify URLs as either legitimate or phishing.
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
This model is intended to be used for detecting phishing URLs. It takes a URL as input and outputs a prediction of whether the URL is legitimate or phishing.
|
26 |
+
|
27 |
+
## Training data
|
28 |
+
|
29 |
+
The model was trained on a combination of:
|
30 |
+
- Legitimate URLs from the Majestic Million dataset
|
31 |
+
- Phishing URLs from phishing-links-ACTIVE.txt and phishing-links-INACTIVE.txt
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
The model was fine-tuned using the Hugging Face Transformers library with the following parameters:
|
36 |
+
- Learning rate: 5e-5
|
37 |
+
- Batch size: 16
|
38 |
+
- Number of epochs: 3
|
39 |
+
- Weight decay: 0.01
|
40 |
+
|
41 |
+
## Evaluation results
|
42 |
+
|
43 |
+
The model was evaluated on a test set consisting of both legitimate and phishing URLs.
|
44 |
+
|
45 |
+
## Usage
|
46 |
+
|
47 |
+
```python
|
48 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
49 |
+
import torch
|
50 |
+
|
51 |
+
# Load model and tokenizer
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained("songhieng/TinyBERT-URL-Detection-1.0")
|
53 |
+
model = AutoModelForSequenceClassification.from_pretrained("songhieng/TinyBERT-URL-Detection-1.0")
|
54 |
+
|
55 |
+
# Prepare URL for classification
|
56 |
+
url = "https://example.com"
|
57 |
+
inputs = tokenizer(url, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
58 |
+
|
59 |
+
# Make prediction
|
60 |
+
with torch.no_grad():
|
61 |
+
outputs = model(**inputs)
|
62 |
+
predictions = torch.softmax(outputs.logits, dim=1)
|
63 |
+
label = torch.argmax(predictions, dim=1).item()
|
64 |
+
|
65 |
+
# Output result
|
66 |
+
result = "phishing" if label == 1 else "legitimate"
|
67 |
+
confidence = predictions[0][label].item()
|
68 |
+
print(f"URL: {url}")
|
69 |
+
print(f"Prediction: {result}")
|
70 |
+
print(f"Confidence: {confidence:.4f}")
|
71 |
+
```
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForSequenceClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"cell": {},
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"emb_size": 312,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 312,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1200,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 4,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"pre_trained": "",
|
22 |
+
"problem_type": "single_label_classification",
|
23 |
+
"structure": [],
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.52.4",
|
26 |
+
"type_vocab_size": 2,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 30522
|
29 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d3ecc287eed1118eb9c7adeab30f62925dcfb3986317ad0367e638ff7897624
|
3 |
+
size 57411808
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|