|
import akshare as ak |
|
import pandas as pd |
|
|
|
class USStockService: |
|
|
|
def search_us_stocks(self, keyword): |
|
""" |
|
搜索美股代码 |
|
:param keyword: 搜索关键词 |
|
:return: 匹配的股票列表 |
|
""" |
|
try: |
|
|
|
df = ak.stock_us_spot_em() |
|
|
|
|
|
df = df.rename(columns={ |
|
"序号": "index", |
|
"名称": "name", |
|
"最新价": "price", |
|
"涨跌额": "price_change", |
|
"涨跌幅": "price_change_percent", |
|
"开盘价": "open", |
|
"最高价": "high", |
|
"最低价": "low", |
|
"昨收价": "pre_close", |
|
"总市值": "market_value", |
|
"市盈率": "pe_ratio", |
|
"成交量": "volume", |
|
"成交额": "turnover", |
|
"振幅": "amplitude", |
|
"换手率": "turnover_rate", |
|
"代码": "symbol" |
|
}) |
|
|
|
|
|
mask = df['name'].str.contains(keyword, case=False, na=False) |
|
results = df[mask] |
|
|
|
|
|
formatted_results = [] |
|
for _, row in results.iterrows(): |
|
formatted_results.append({ |
|
'name': row['name'] if pd.notna(row['name']) else '', |
|
'symbol': str(row['symbol']) if pd.notna(row['symbol']) else '', |
|
'price': float(row['price']) if pd.notna(row['price']) else 0.0, |
|
'market_value': float(row['market_value']) if pd.notna(row['market_value']) else 0.0 |
|
}) |
|
|
|
return formatted_results |
|
|
|
except Exception as e: |
|
raise Exception(f"搜索美股代码失败: {str(e)}") |