import akshare as ak import pandas as pd class FundService: def search_funds(self, keyword, market_type='ETF'): """ 搜索基金代码 :param keyword: 搜索关键词 :return: 匹配的基金列表 """ try: # 获取ETF和LOF数据 if market_type == 'ETF': df = ak.fund_etf_spot_em() else: df = ak.fund_lof_spot_em() # 转换列名 df = df.rename(columns={ "代码": "symbol", "名称": "name", "最新价": "price", "涨跌额": "price_change", "涨跌幅": "price_change_percent", "成交量": "volume", "流通市值": "market_value", "总市值": "total_value", "基金折价率": "discount_rate", }) # 模糊匹配搜索(同时匹配代码和名称) mask = (df['name'].str.contains(keyword, case=False, na=False) | df['symbol'].str.contains(keyword, case=False, na=False)) results = df[mask] # 格式化返回结果并处理 NaN 值 formatted_results = [] for _, row in results.iterrows(): formatted_results.append({ 'name': row['name'] if pd.notna(row['name']) else '', 'symbol': str(row['symbol']) if pd.notna(row['symbol']) else '', 'price': float(row['price']) if pd.notna(row['price']) else 0.0, 'volume': float(row['volume']) if pd.notna(row['volume']) else 0.0, 'market_value': float(row['market_value']) if pd.notna(row['market_value']) else 0.0, 'total_value': float(row['total_value']) if pd.notna(row['total_value']) else 0.0, }) return formatted_results except Exception as e: raise Exception(f"搜索基金代码失败: {str(e)}")