File size: 8,173 Bytes
ff00a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
'''
Author: Manu Gond (manu.gond@miun.se)
Date: Nov-15-2022
Objective:  Accumulation of some general functions which I
            use daily in my code realted to image relasted task.
            The function names and parameters are self explanetory.
Requirements: Installed python libraries which have been imported.
'''

import torch
from torchvision.utils import save_image
from torchvision.transforms import transforms
import torchmetrics
import cv2
import numpy as np
from PIL import Image
import utils


#======================= Read and Write =====================#
def readImage(location):
    image = Image.open(location).convert("RGB")
    return image


def writeImage(image, location):
    image.save(location)


def writeTensorImage(image, filename):
    save_image(image, filename)


def removeChannel(sourceLocation, targetLocation):
    img = readImage(sourceLocation)
    writeImage(img, targetLocation)


def getImageTransform(width, height):
    transform = transforms.Compose([transforms.Resize((height,width)),
                                    transforms.ToTensor()])
    return transform


def convertTensor(image):
    transform = getImageTransform(image.size[0], image.size[1])
    image = transform(image)
    return image


#=================== 360 Images =======================#

def rotateERP180(image):
    '''
    :param image: PIL Image
    :return: BxHxW Torch Tensor Image
    '''
    W = image.size[0]
    H = image.size[1]
    transform = getImageTransform(W, H)
    image = transform(image)
    image1 = image[:, :, 0:(W//2)]
    image2 = image[:, :, (W//2):W]
    image3 = torch.zeros(image.size())
    image3[:, :, 0:(W//2)] = image2
    image3[:, :, (W//2):W] = image1
    return image3


def convertERP2Cube(e_img, face_w=256, mode='bilinear', cube_format='dice'):
    '''
        e_img:  ndarray in shape of [H, W, *]
        face_w: int, the length of each face of the cubemap
        '''
    assert len(e_img.shape) == 3
    h, w = e_img.shape[:2]
    if mode == 'bilinear':
        order = 1
    elif mode == 'nearest':
        order = 0
    else:
        raise NotImplementedError('unknown mode')

    xyz = utils.xyzcube(face_w)
    uv = utils.xyz2uv(xyz)
    coor_xy = utils.uv2coor(uv, h, w)

    cubemap = np.stack([
        utils.sample_equirec(e_img[..., i], coor_xy, order=order)
        for i in range(e_img.shape[2])
    ], axis=-1)

    if cube_format == 'horizon':
        pass
    elif cube_format == 'list':
        cubemap = utils.cube_h2list(cubemap)
    elif cube_format == 'dict':
        cubemap = utils.cube_h2dict(cubemap)
    elif cube_format == 'dice':
        cubemap = utils.cube_h2dice(cubemap)
    else:
        raise NotImplementedError()
    return cubemap


def convertCube2ERP(cubemap, h, w, mode='bilinear', cube_format='dice'):
    if mode == 'bilinear':
        order = 1
    elif mode == 'nearest':
        order = 0
    else:
        raise NotImplementedError('unknown mode')

    if cube_format == 'horizon':
        pass
    elif cube_format == 'list':
        cubemap = utils.cube_list2h(cubemap)
    elif cube_format == 'dict':
        cubemap = utils.cube_dict2h(cubemap)
    elif cube_format == 'dice':
        cubemap = utils.cube_dice2h(cubemap)
    else:
        raise NotImplementedError('unknown cube_format')
    assert len(cubemap.shape) == 3
    assert cubemap.shape[0] * 6 == cubemap.shape[1]
    assert w % 8 == 0
    face_w = cubemap.shape[0]

    uv = utils.equirect_uvgrid(h, w)
    u, v = np.split(uv, 2, axis=-1)
    u = u[..., 0]
    v = v[..., 0]
    cube_faces = np.stack(np.split(cubemap, 6, 1), 0)

    # Get face id to each pixel: 0F 1R 2B 3L 4U 5D
    tp = utils.equirect_facetype(h, w)
    coor_x = np.zeros((h, w))
    coor_y = np.zeros((h, w))

    for i in range(4):
        mask = (tp == i)
        coor_x[mask] = 0.5 * np.tan(u[mask] - np.pi * i / 2)
        coor_y[mask] = -0.5 * np.tan(v[mask]) / np.cos(u[mask] - np.pi * i / 2)

    mask = (tp == 4)
    c = 0.5 * np.tan(np.pi / 2 - v[mask])
    coor_x[mask] = c * np.sin(u[mask])
    coor_y[mask] = c * np.cos(u[mask])

    mask = (tp == 5)
    c = 0.5 * np.tan(np.pi / 2 - np.abs(v[mask]))
    coor_x[mask] = c * np.sin(u[mask])
    coor_y[mask] = -c * np.cos(u[mask])

    # Final renormalize
    coor_x = (np.clip(coor_x, -0.5, 0.5) + 0.5) * face_w
    coor_y = (np.clip(coor_y, -0.5, 0.5) + 0.5) * face_w

    equirec = np.stack([
        utils.sample_cubefaces(cube_faces[..., i], tp, coor_y, coor_x, order=order)
        for i in range(cube_faces.shape[3])
    ], axis=-1)
    return equirec



def convertCube2Slices(image):
    '''
    :param image: Image numpy array
    :return: List of Torch Tensors, CxHxW
    '''
    image = convertTensor(image)
    C, H, W = image.size()
    #print(C,H,W)
    top = torch.zeros((C,W//4,W//4))
    left = torch.zeros(top.size())
    front = torch.zeros(top.size())
    right = torch.zeros(top.size())
    back = torch.zeros(top.size())
    bottom = torch.zeros(top.size())

    top = image[:, 0:H//3, (W//4):(W//4)*2]
    left = image[:, (H//3):(H//3)*2, 0:W//4]
    front = image[:, (H//3):(H//3)*2, (W//4):(W//4)*2]
    right = image[:, (H//3):(H//3)*2, (W//4)*2:(W//4)*3]
    back = image[:, (H // 3):(H // 3) * 2, (W // 4) * 3:]
    bottom = image[:, (H//3)*2:, (W//4):(W//4)*2]

    '''
        save_image(top, 'top.png')
        save_image(left, 'left.png')
        save_image(front, 'front.png')
        save_image(right, 'right.png')
        save_image(back, 'back.png')
        save_image(bottom, 'bottom.png')
    '''
    return [top, left, front, right, back, bottom]

def convertSlicesToCube(imageList):
    '''
    top = convertTensor(readImage(imageList[0]))
    left = convertTensor(readImage(imageList[1]))
    front = convertTensor(readImage(imageList[2]))
    right = convertTensor(readImage(imageList[3]))
    back = convertTensor(readImage(imageList[4]))
    bottom = convertTensor(readImage(imageList[5]))
    '''
    top = imageList[0]
    left = imageList[1]
    front = imageList[2]
    right = imageList[3]
    back = imageList[4]
    bottom = imageList[5]

    C, H, W = 3,  top.size()[1]*3, top.size()[2]*4
    cube = torch.zeros((C, H, W))

    cube[:, 0:H//3, (W//4):(W//4)*2] = top
    cube[:, (H // 3):(H // 3) * 2, 0:W // 4] = left
    cube[:, (H // 3):(H // 3) * 2, (W // 4):(W // 4) * 2] = front
    cube[:, (H // 3):(H // 3) * 2, (W // 4) * 2:(W // 4) * 3] = right
    cube[:, (H // 3):(H // 3) * 2, (W // 4) * 3:] = back
    cube[:, (H // 3) * 2:, (W // 4):(W // 4) * 2] = bottom

    return cube



#=================== Quality Measures =======================#
'''
Predicted Shape : BxCxHxW
Original Shape  : BxCxHxW
Data Type: Torch Tensor
'''
def getSSIM(predicted, original):
    SSIM = torchmetrics.StructuralSimilarityIndexMeasure()
    return SSIM(predicted, original).item()


def getPSNR(predicted, original):
    PSNR = torchmetrics.PeakSignalNoiseRatio()
    return PSNR(predicted, original).item()


def getMSE(predicted, original):
    MSE = torchmetrics.MeanSquaredError()
    return MSE(predicted, original).item()


def getMAE(predicted, original):
    MAE = torchmetrics.MeanAbsoluteError()
    return MAE(predicted, original).item()



if __name__ == "__main__":

    '''
    img = readImage("31_image_0_0.png")
    img = convertERP2Cube(e_img=np.asarray(img), face_w=256)
    img = Image.fromarray(img.astype('uint8'),'RGB')
    convertCube2Slices(img)
    '''
    #image = convertSlicesToCube(["top.png", "left.png", "front.png", "right.png", "back.png", "bottom.png"])
    #writeTensorImage(image,'this.png')

    '''
    writeImage(img, 'cube.png')

    img = readImage('cube.png')
    img = convertCube2ERP(np.asarray(img),512,1024)
    img = Image.fromarray(img.astype('uint8'),'RGB')
    writeImage(img, 'cubeERP.png')


    img1 = readImage("31_image_0_0.png")
    img2 = readImage("cubeERP.png")
    img1 = convertTensor(img1)
    img2 = convertTensor(img2)
    print(getSSIM(img1.unsqueeze(0), img2.unsqueeze(0)))
    '''

    #img = rotateERP180(img)
    #writeTensorImage(img, 'rotated_image.png')
    #img = convertTensor(img)
    #print(getMAE(img.unsqueeze(0),img.unsqueeze(0)))