File size: 7,435 Bytes
ff00a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import numpy as np
from scipy.ndimage import map_coordinates


def xyzcube(face_w):
    '''
    Return the xyz cordinates of the unit cube in [F R B L U D] format.
    '''
    out = np.zeros((face_w, face_w * 6, 3), np.float32)
    rng = np.linspace(-0.5, 0.5, num=face_w, dtype=np.float32)
    grid = np.stack(np.meshgrid(rng, -rng), -1)

    # Front face (z = 0.5)
    out[:, 0*face_w:1*face_w, [0, 1]] = grid
    out[:, 0*face_w:1*face_w, 2] = 0.5

    # Right face (x = 0.5)
    out[:, 1*face_w:2*face_w, [2, 1]] = grid
    out[:, 1*face_w:2*face_w, 0] = 0.5

    # Back face (z = -0.5)
    out[:, 2*face_w:3*face_w, [0, 1]] = grid
    out[:, 2*face_w:3*face_w, 2] = -0.5

    # Left face (x = -0.5)
    out[:, 3*face_w:4*face_w, [2, 1]] = grid
    out[:, 3*face_w:4*face_w, 0] = -0.5

    # Up face (y = 0.5)
    out[:, 4*face_w:5*face_w, [0, 2]] = grid
    out[:, 4*face_w:5*face_w, 1] = 0.5

    # Down face (y = -0.5)
    out[:, 5*face_w:6*face_w, [0, 2]] = grid
    out[:, 5*face_w:6*face_w, 1] = -0.5

    return out


def equirect_uvgrid(h, w):
    u = np.linspace(-np.pi, np.pi, num=w, dtype=np.float32)
    v = np.linspace(np.pi, -np.pi, num=h, dtype=np.float32) / 2

    return np.stack(np.meshgrid(u, v), axis=-1)


def equirect_facetype(h, w):
    '''
    0F 1R 2B 3L 4U 5D
    '''
    tp = np.roll(np.arange(4).repeat(w // 4)[None, :].repeat(h, 0), 3 * w // 8, 1)

    # Prepare ceil mask
    mask = np.zeros((h, w // 4), np.bool)
    idx = np.linspace(-np.pi, np.pi, w // 4) / 4
    idx = h // 2 - np.round(np.arctan(np.cos(idx)) * h / np.pi).astype(int)
    for i, j in enumerate(idx):
        mask[:j, i] = 1
    mask = np.roll(np.concatenate([mask] * 4, 1), 3 * w // 8, 1)

    tp[mask] = 4
    tp[np.flip(mask, 0)] = 5

    return tp.astype(np.int32)


def xyzpers(h_fov, v_fov, u, v, out_hw, in_rot):
    out = np.ones((*out_hw, 3), np.float32)

    x_max = np.tan(h_fov / 2)
    y_max = np.tan(v_fov / 2)
    x_rng = np.linspace(-x_max, x_max, num=out_hw[1], dtype=np.float32)
    y_rng = np.linspace(-y_max, y_max, num=out_hw[0], dtype=np.float32)
    out[..., :2] = np.stack(np.meshgrid(x_rng, -y_rng), -1)
    Rx = rotation_matrix(v, [1, 0, 0])
    Ry = rotation_matrix(u, [0, 1, 0])
    Ri = rotation_matrix(in_rot, np.array([0, 0, 1.0]).dot(Rx).dot(Ry))

    return out.dot(Rx).dot(Ry).dot(Ri)


def xyz2uv(xyz):
    '''
    xyz: ndarray in shape of [..., 3]
    '''
    x, y, z = np.split(xyz, 3, axis=-1)
    u = np.arctan2(x, z)
    c = np.sqrt(x**2 + z**2)
    v = np.arctan2(y, c)

    return np.concatenate([u, v], axis=-1)


def uv2unitxyz(uv):
    u, v = np.split(uv, 2, axis=-1)
    y = np.sin(v)
    c = np.cos(v)
    x = c * np.sin(u)
    z = c * np.cos(u)

    return np.concatenate([x, y, z], axis=-1)


def uv2coor(uv, h, w):
    '''
    uv: ndarray in shape of [..., 2]
    h: int, height of the equirectangular image
    w: int, width of the equirectangular image
    '''
    u, v = np.split(uv, 2, axis=-1)
    coor_x = (u / (2 * np.pi) + 0.5) * w - 0.5
    coor_y = (-v / np.pi + 0.5) * h - 0.5

    return np.concatenate([coor_x, coor_y], axis=-1)


def coor2uv(coorxy, h, w):
    coor_x, coor_y = np.split(coorxy, 2, axis=-1)
    u = ((coor_x + 0.5) / w - 0.5) * 2 * np.pi
    v = -((coor_y + 0.5) / h - 0.5) * np.pi

    return np.concatenate([u, v], axis=-1)


def sample_equirec(e_img, coor_xy, order):
    w = e_img.shape[1]
    coor_x, coor_y = np.split(coor_xy, 2, axis=-1)
    pad_u = np.roll(e_img[[0]], w // 2, 1)
    pad_d = np.roll(e_img[[-1]], w // 2, 1)
    e_img = np.concatenate([e_img, pad_d, pad_u], 0)
    return map_coordinates(e_img, [coor_y, coor_x],
                           order=order, mode='wrap')[..., 0]


def sample_cubefaces(cube_faces, tp, coor_y, coor_x, order):
    cube_faces = cube_faces.copy()
    cube_faces[1] = np.flip(cube_faces[1], 1)
    cube_faces[2] = np.flip(cube_faces[2], 1)
    cube_faces[4] = np.flip(cube_faces[4], 0)

    # Pad up down
    pad_ud = np.zeros((6, 2, cube_faces.shape[2]))
    pad_ud[0, 0] = cube_faces[5, 0, :]
    pad_ud[0, 1] = cube_faces[4, -1, :]
    pad_ud[1, 0] = cube_faces[5, :, -1]
    pad_ud[1, 1] = cube_faces[4, ::-1, -1]
    pad_ud[2, 0] = cube_faces[5, -1, ::-1]
    pad_ud[2, 1] = cube_faces[4, 0, ::-1]
    pad_ud[3, 0] = cube_faces[5, ::-1, 0]
    pad_ud[3, 1] = cube_faces[4, :, 0]
    pad_ud[4, 0] = cube_faces[0, 0, :]
    pad_ud[4, 1] = cube_faces[2, 0, ::-1]
    pad_ud[5, 0] = cube_faces[2, -1, ::-1]
    pad_ud[5, 1] = cube_faces[0, -1, :]
    cube_faces = np.concatenate([cube_faces, pad_ud], 1)

    # Pad left right
    pad_lr = np.zeros((6, cube_faces.shape[1], 2))
    pad_lr[0, :, 0] = cube_faces[1, :, 0]
    pad_lr[0, :, 1] = cube_faces[3, :, -1]
    pad_lr[1, :, 0] = cube_faces[2, :, 0]
    pad_lr[1, :, 1] = cube_faces[0, :, -1]
    pad_lr[2, :, 0] = cube_faces[3, :, 0]
    pad_lr[2, :, 1] = cube_faces[1, :, -1]
    pad_lr[3, :, 0] = cube_faces[0, :, 0]
    pad_lr[3, :, 1] = cube_faces[2, :, -1]
    pad_lr[4, 1:-1, 0] = cube_faces[1, 0, ::-1]
    pad_lr[4, 1:-1, 1] = cube_faces[3, 0, :]
    pad_lr[5, 1:-1, 0] = cube_faces[1, -2, :]
    pad_lr[5, 1:-1, 1] = cube_faces[3, -2, ::-1]
    cube_faces = np.concatenate([cube_faces, pad_lr], 2)

    return map_coordinates(cube_faces, [tp, coor_y, coor_x], order=order, mode='wrap')


def cube_h2list(cube_h):
    assert cube_h.shape[0] * 6 == cube_h.shape[1]
    return np.split(cube_h, 6, axis=1)


def cube_list2h(cube_list):
    assert len(cube_list) == 6
    assert sum(face.shape == cube_list[0].shape for face in cube_list) == 6
    return np.concatenate(cube_list, axis=1)


def cube_h2dict(cube_h):
    cube_list = cube_h2list(cube_h)
    return dict([(k, cube_list[i])
                 for i, k in enumerate(['F', 'R', 'B', 'L', 'U', 'D'])])


def cube_dict2h(cube_dict, face_k=['F', 'R', 'B', 'L', 'U', 'D']):
    assert len(face_k) == 6
    return cube_list2h([cube_dict[k] for k in face_k])


def cube_h2dice(cube_h):
    assert cube_h.shape[0] * 6 == cube_h.shape[1]
    w = cube_h.shape[0]
    cube_dice = np.zeros((w * 3, w * 4, cube_h.shape[2]), dtype=cube_h.dtype)
    cube_list = cube_h2list(cube_h)
    # Order: F R B L U D
    sxy = [(1, 1), (2, 1), (3, 1), (0, 1), (1, 0), (1, 2)]
    for i, (sx, sy) in enumerate(sxy):
        face = cube_list[i]
        if i in [1, 2]:
            face = np.flip(face, axis=1)
        if i == 4:
            face = np.flip(face, axis=0)
        cube_dice[sy*w:(sy+1)*w, sx*w:(sx+1)*w] = face
    return cube_dice


def cube_dice2h(cube_dice):
    w = cube_dice.shape[0] // 3
    assert cube_dice.shape[0] == w * 3 and cube_dice.shape[1] == w * 4
    cube_h = np.zeros((w, w * 6, cube_dice.shape[2]), dtype=cube_dice.dtype)
    # Order: F R B L U D
    sxy = [(1, 1), (2, 1), (3, 1), (0, 1), (1, 0), (1, 2)]
    for i, (sx, sy) in enumerate(sxy):
        face = cube_dice[sy*w:(sy+1)*w, sx*w:(sx+1)*w]
        if i in [1, 2]:
            face = np.flip(face, axis=1)
        if i == 4:
            face = np.flip(face, axis=0)
        cube_h[:, i*w:(i+1)*w] = face
    return cube_h


def rotation_matrix(rad, ax):
    ax = np.array(ax)
    assert len(ax.shape) == 1 and ax.shape[0] == 3
    ax = ax / np.sqrt((ax**2).sum())
    R = np.diag([np.cos(rad)] * 3)
    R = R + np.outer(ax, ax) * (1.0 - np.cos(rad))

    ax = ax * np.sin(rad)
    R = R + np.array([[0, -ax[2], ax[1]],
                      [ax[2], 0, -ax[0]],
                      [-ax[1], ax[0], 0]])

    return R