File size: 7,435 Bytes
ff00a24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import numpy as np
from scipy.ndimage import map_coordinates
def xyzcube(face_w):
'''
Return the xyz cordinates of the unit cube in [F R B L U D] format.
'''
out = np.zeros((face_w, face_w * 6, 3), np.float32)
rng = np.linspace(-0.5, 0.5, num=face_w, dtype=np.float32)
grid = np.stack(np.meshgrid(rng, -rng), -1)
# Front face (z = 0.5)
out[:, 0*face_w:1*face_w, [0, 1]] = grid
out[:, 0*face_w:1*face_w, 2] = 0.5
# Right face (x = 0.5)
out[:, 1*face_w:2*face_w, [2, 1]] = grid
out[:, 1*face_w:2*face_w, 0] = 0.5
# Back face (z = -0.5)
out[:, 2*face_w:3*face_w, [0, 1]] = grid
out[:, 2*face_w:3*face_w, 2] = -0.5
# Left face (x = -0.5)
out[:, 3*face_w:4*face_w, [2, 1]] = grid
out[:, 3*face_w:4*face_w, 0] = -0.5
# Up face (y = 0.5)
out[:, 4*face_w:5*face_w, [0, 2]] = grid
out[:, 4*face_w:5*face_w, 1] = 0.5
# Down face (y = -0.5)
out[:, 5*face_w:6*face_w, [0, 2]] = grid
out[:, 5*face_w:6*face_w, 1] = -0.5
return out
def equirect_uvgrid(h, w):
u = np.linspace(-np.pi, np.pi, num=w, dtype=np.float32)
v = np.linspace(np.pi, -np.pi, num=h, dtype=np.float32) / 2
return np.stack(np.meshgrid(u, v), axis=-1)
def equirect_facetype(h, w):
'''
0F 1R 2B 3L 4U 5D
'''
tp = np.roll(np.arange(4).repeat(w // 4)[None, :].repeat(h, 0), 3 * w // 8, 1)
# Prepare ceil mask
mask = np.zeros((h, w // 4), np.bool)
idx = np.linspace(-np.pi, np.pi, w // 4) / 4
idx = h // 2 - np.round(np.arctan(np.cos(idx)) * h / np.pi).astype(int)
for i, j in enumerate(idx):
mask[:j, i] = 1
mask = np.roll(np.concatenate([mask] * 4, 1), 3 * w // 8, 1)
tp[mask] = 4
tp[np.flip(mask, 0)] = 5
return tp.astype(np.int32)
def xyzpers(h_fov, v_fov, u, v, out_hw, in_rot):
out = np.ones((*out_hw, 3), np.float32)
x_max = np.tan(h_fov / 2)
y_max = np.tan(v_fov / 2)
x_rng = np.linspace(-x_max, x_max, num=out_hw[1], dtype=np.float32)
y_rng = np.linspace(-y_max, y_max, num=out_hw[0], dtype=np.float32)
out[..., :2] = np.stack(np.meshgrid(x_rng, -y_rng), -1)
Rx = rotation_matrix(v, [1, 0, 0])
Ry = rotation_matrix(u, [0, 1, 0])
Ri = rotation_matrix(in_rot, np.array([0, 0, 1.0]).dot(Rx).dot(Ry))
return out.dot(Rx).dot(Ry).dot(Ri)
def xyz2uv(xyz):
'''
xyz: ndarray in shape of [..., 3]
'''
x, y, z = np.split(xyz, 3, axis=-1)
u = np.arctan2(x, z)
c = np.sqrt(x**2 + z**2)
v = np.arctan2(y, c)
return np.concatenate([u, v], axis=-1)
def uv2unitxyz(uv):
u, v = np.split(uv, 2, axis=-1)
y = np.sin(v)
c = np.cos(v)
x = c * np.sin(u)
z = c * np.cos(u)
return np.concatenate([x, y, z], axis=-1)
def uv2coor(uv, h, w):
'''
uv: ndarray in shape of [..., 2]
h: int, height of the equirectangular image
w: int, width of the equirectangular image
'''
u, v = np.split(uv, 2, axis=-1)
coor_x = (u / (2 * np.pi) + 0.5) * w - 0.5
coor_y = (-v / np.pi + 0.5) * h - 0.5
return np.concatenate([coor_x, coor_y], axis=-1)
def coor2uv(coorxy, h, w):
coor_x, coor_y = np.split(coorxy, 2, axis=-1)
u = ((coor_x + 0.5) / w - 0.5) * 2 * np.pi
v = -((coor_y + 0.5) / h - 0.5) * np.pi
return np.concatenate([u, v], axis=-1)
def sample_equirec(e_img, coor_xy, order):
w = e_img.shape[1]
coor_x, coor_y = np.split(coor_xy, 2, axis=-1)
pad_u = np.roll(e_img[[0]], w // 2, 1)
pad_d = np.roll(e_img[[-1]], w // 2, 1)
e_img = np.concatenate([e_img, pad_d, pad_u], 0)
return map_coordinates(e_img, [coor_y, coor_x],
order=order, mode='wrap')[..., 0]
def sample_cubefaces(cube_faces, tp, coor_y, coor_x, order):
cube_faces = cube_faces.copy()
cube_faces[1] = np.flip(cube_faces[1], 1)
cube_faces[2] = np.flip(cube_faces[2], 1)
cube_faces[4] = np.flip(cube_faces[4], 0)
# Pad up down
pad_ud = np.zeros((6, 2, cube_faces.shape[2]))
pad_ud[0, 0] = cube_faces[5, 0, :]
pad_ud[0, 1] = cube_faces[4, -1, :]
pad_ud[1, 0] = cube_faces[5, :, -1]
pad_ud[1, 1] = cube_faces[4, ::-1, -1]
pad_ud[2, 0] = cube_faces[5, -1, ::-1]
pad_ud[2, 1] = cube_faces[4, 0, ::-1]
pad_ud[3, 0] = cube_faces[5, ::-1, 0]
pad_ud[3, 1] = cube_faces[4, :, 0]
pad_ud[4, 0] = cube_faces[0, 0, :]
pad_ud[4, 1] = cube_faces[2, 0, ::-1]
pad_ud[5, 0] = cube_faces[2, -1, ::-1]
pad_ud[5, 1] = cube_faces[0, -1, :]
cube_faces = np.concatenate([cube_faces, pad_ud], 1)
# Pad left right
pad_lr = np.zeros((6, cube_faces.shape[1], 2))
pad_lr[0, :, 0] = cube_faces[1, :, 0]
pad_lr[0, :, 1] = cube_faces[3, :, -1]
pad_lr[1, :, 0] = cube_faces[2, :, 0]
pad_lr[1, :, 1] = cube_faces[0, :, -1]
pad_lr[2, :, 0] = cube_faces[3, :, 0]
pad_lr[2, :, 1] = cube_faces[1, :, -1]
pad_lr[3, :, 0] = cube_faces[0, :, 0]
pad_lr[3, :, 1] = cube_faces[2, :, -1]
pad_lr[4, 1:-1, 0] = cube_faces[1, 0, ::-1]
pad_lr[4, 1:-1, 1] = cube_faces[3, 0, :]
pad_lr[5, 1:-1, 0] = cube_faces[1, -2, :]
pad_lr[5, 1:-1, 1] = cube_faces[3, -2, ::-1]
cube_faces = np.concatenate([cube_faces, pad_lr], 2)
return map_coordinates(cube_faces, [tp, coor_y, coor_x], order=order, mode='wrap')
def cube_h2list(cube_h):
assert cube_h.shape[0] * 6 == cube_h.shape[1]
return np.split(cube_h, 6, axis=1)
def cube_list2h(cube_list):
assert len(cube_list) == 6
assert sum(face.shape == cube_list[0].shape for face in cube_list) == 6
return np.concatenate(cube_list, axis=1)
def cube_h2dict(cube_h):
cube_list = cube_h2list(cube_h)
return dict([(k, cube_list[i])
for i, k in enumerate(['F', 'R', 'B', 'L', 'U', 'D'])])
def cube_dict2h(cube_dict, face_k=['F', 'R', 'B', 'L', 'U', 'D']):
assert len(face_k) == 6
return cube_list2h([cube_dict[k] for k in face_k])
def cube_h2dice(cube_h):
assert cube_h.shape[0] * 6 == cube_h.shape[1]
w = cube_h.shape[0]
cube_dice = np.zeros((w * 3, w * 4, cube_h.shape[2]), dtype=cube_h.dtype)
cube_list = cube_h2list(cube_h)
# Order: F R B L U D
sxy = [(1, 1), (2, 1), (3, 1), (0, 1), (1, 0), (1, 2)]
for i, (sx, sy) in enumerate(sxy):
face = cube_list[i]
if i in [1, 2]:
face = np.flip(face, axis=1)
if i == 4:
face = np.flip(face, axis=0)
cube_dice[sy*w:(sy+1)*w, sx*w:(sx+1)*w] = face
return cube_dice
def cube_dice2h(cube_dice):
w = cube_dice.shape[0] // 3
assert cube_dice.shape[0] == w * 3 and cube_dice.shape[1] == w * 4
cube_h = np.zeros((w, w * 6, cube_dice.shape[2]), dtype=cube_dice.dtype)
# Order: F R B L U D
sxy = [(1, 1), (2, 1), (3, 1), (0, 1), (1, 0), (1, 2)]
for i, (sx, sy) in enumerate(sxy):
face = cube_dice[sy*w:(sy+1)*w, sx*w:(sx+1)*w]
if i in [1, 2]:
face = np.flip(face, axis=1)
if i == 4:
face = np.flip(face, axis=0)
cube_h[:, i*w:(i+1)*w] = face
return cube_h
def rotation_matrix(rad, ax):
ax = np.array(ax)
assert len(ax.shape) == 1 and ax.shape[0] == 3
ax = ax / np.sqrt((ax**2).sum())
R = np.diag([np.cos(rad)] * 3)
R = R + np.outer(ax, ax) * (1.0 - np.cos(rad))
ax = ax * np.sin(rad)
R = R + np.array([[0, -ax[2], ax[1]],
[ax[2], 0, -ax[0]],
[-ax[1], ax[0], 0]])
return R |