File size: 11,700 Bytes
ff00a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import torch

from utils.mpi.homography_sampler import HomographySample
from utils.mpi.rendering_utils import transform_G_xyz, sample_pdf, gather_pixel_by_pxpy


def render(rgb_BS3HW, sigma_BS1HW, xyz_BS3HW, use_alpha=False, is_bg_depth_inf=False):
    if not use_alpha:
        imgs_syn, depth_syn, blend_weights, weights = plane_volume_rendering(
            rgb_BS3HW,
            sigma_BS1HW,
            xyz_BS3HW,
            is_bg_depth_inf
        )
    else:
        imgs_syn, weights = alpha_composition(sigma_BS1HW, rgb_BS3HW)
        depth_syn, _ = alpha_composition(sigma_BS1HW, xyz_BS3HW[:, :, 2:])
        # No rgb blending with alpha composition
        blend_weights = torch.cumprod(1 - sigma_BS1HW + 1e-6, dim=1)
        # blend_weights = torch.zeros_like(rgb_BS3HW).cuda()
    return imgs_syn, depth_syn, blend_weights, weights


def alpha_composition(alpha_BK1HW, value_BKCHW):
    """
    composition equation from 'Single-View View Synthesis with Multiplane Images'
    K is the number of planes, k=0 means the nearest plane, k=K-1 means the farthest plane
    :param alpha_BK1HW: alpha at each of the K planes
    :param value_BKCHW: rgb/disparity at each of the K planes
    :return:
    """
    B, K, _, H, W = alpha_BK1HW.size()
    alpha_comp_cumprod = torch.cumprod(1 - alpha_BK1HW, dim=1)  # BxKx1xHxW

    preserve_ratio = torch.cat((torch.ones((B, 1, 1, H, W), dtype=alpha_BK1HW.dtype, device=alpha_BK1HW.device),
                                alpha_comp_cumprod[:, 0:K-1, :, :, :]), dim=1)  # BxKx1xHxW
    weights = alpha_BK1HW * preserve_ratio  # BxKx1xHxW
    value_composed = torch.sum(value_BKCHW * weights, dim=1, keepdim=False)  # Bx3xHxW

    return value_composed, weights


def plane_volume_rendering(rgb_BS3HW, sigma_BS1HW, xyz_BS3HW, is_bg_depth_inf):
    B, S, _, H, W = sigma_BS1HW.size()

    xyz_diff_BS3HW = xyz_BS3HW[:, 1:, :, :, :] - xyz_BS3HW[:, 0:-1, :, :, :]  # Bx(S-1)x3xHxW
    xyz_dist_BS1HW = torch.norm(xyz_diff_BS3HW, dim=2, keepdim=True)  # Bx(S-1)x1xHxW

    xyz_dist_BS1HW = torch.cat((xyz_dist_BS1HW,
                                torch.full((B, 1, 1, H, W),
                                           fill_value=1e3,
                                           dtype=xyz_BS3HW.dtype,
                                           device=xyz_BS3HW.device)),
                               dim=1)  # BxSx3xHxW
    transparency = torch.exp(-sigma_BS1HW * xyz_dist_BS1HW)  # BxSx1xHxW
    alpha = 1 - transparency # BxSx1xHxW

    # add small eps to avoid zero transparency_acc
    # pytorch.cumprod is like: [a, b, c] -> [a, a*b, a*b*c], we need to modify it to [1, a, a*b]
    transparency_acc = torch.cumprod(transparency + 1e-6, dim=1)  # BxSx1xHxW
    transparency_acc = torch.cat((torch.ones((B, 1, 1, H, W), dtype=transparency.dtype, device=transparency.device),
                                  transparency_acc[:, 0:-1, :, :, :]),
                                 dim=1)  # BxSx1xHxW

    weights = transparency_acc * alpha  # BxSx1xHxW
    rgb_out, depth_out = weighted_sum_mpi(rgb_BS3HW, xyz_BS3HW, weights, is_bg_depth_inf)

    return rgb_out, depth_out, transparency_acc, weights


def weighted_sum_mpi(rgb_BS3HW, xyz_BS3HW, weights, is_bg_depth_inf):
    weights_sum = torch.sum(weights, dim=1, keepdim=False)  # Bx1xHxW
    rgb_out = torch.sum(weights * rgb_BS3HW, dim=1, keepdim=False)  # Bx3xHxW

    if is_bg_depth_inf:
        # for dtu dataset, set large depth if weight_sum is small
        depth_out = torch.sum(weights * xyz_BS3HW[:, :, 2:, :, :], dim=1, keepdim=False) \
                    + (1 - weights_sum) * 1000
    else:
        depth_out = torch.sum(weights * xyz_BS3HW[:, :, 2:, :, :], dim=1, keepdim=False) \
                    / (weights_sum + 1e-5)  # Bx1xHxW

    return rgb_out, depth_out


def get_xyz_from_depth(meshgrid_homo,
                       depth,
                       K_inv):
    """

    :param meshgrid_homo: 3xHxW
    :param depth: Bx1xHxW
    :param K_inv: Bx3x3
    :return:
    """
    H, W = meshgrid_homo.size(1), meshgrid_homo.size(2)
    B, _, H_d, W_d = depth.size()
    assert H==H_d, W==W_d

    # 3xHxW -> Bx3xHxW
    meshgrid_src_homo = meshgrid_homo.unsqueeze(0).repeat(B, 1, 1, 1)
    meshgrid_src_homo_B3N = meshgrid_src_homo.reshape(B, 3, -1)
    xyz_src = torch.matmul(K_inv, meshgrid_src_homo_B3N)  # Bx3xHW
    xyz_src = xyz_src.reshape(B, 3, H, W) * depth  # Bx3xHxW

    return xyz_src


def disparity_consistency_src_to_tgt(meshgrid_homo, K_src_inv, disparity_src,
                                     G_tgt_src, K_tgt, disparity_tgt):
    """

    :param xyz_src_B3N: Bx3xN
    :param G_tgt_src: Bx4x4
    :param K_tgt: Bx3x3
    :param disparity_tgt: Bx1xHxW
    :return:
    """
    B, _, H, W = disparity_src.size()
    depth_src = torch.reciprocal(disparity_src)
    xyz_src_B3N = get_xyz_from_depth(meshgrid_homo, depth_src, K_src_inv).view(B, 3, H*W)

    xyz_tgt_B3N = transform_G_xyz(G_tgt_src, xyz_src_B3N, is_return_homo=False)
    K_xyz_tgt_B3N = torch.matmul(K_tgt, xyz_tgt_B3N)
    pxpy_tgt_B2N = K_xyz_tgt_B3N[:, 0:2, :] / K_xyz_tgt_B3N[:, 2:, :]  # Bx2xN

    pxpy_tgt_mask = torch.logical_and(
        torch.logical_and(pxpy_tgt_B2N[:, 0:1, :] >= 0,
                          pxpy_tgt_B2N[:, 0:1, :] <= W - 1),
        torch.logical_and(pxpy_tgt_B2N[:, 1:2, :] >= 0,
                          pxpy_tgt_B2N[:, 1:2, :] <= H - 1)
    )  # B1N

    disparity_src = torch.reciprocal(xyz_tgt_B3N[:, 2:, :])  # Bx1xN
    disparity_tgt = gather_pixel_by_pxpy(disparity_tgt, pxpy_tgt_B2N)  # Bx1xN

    depth_diff = torch.abs(disparity_src - disparity_tgt)
    return torch.mean(depth_diff[pxpy_tgt_mask])


def get_src_xyz_from_plane_disparity(meshgrid_src_homo,
                                     mpi_disparity_src,
                                     K_src_inv):
    """

    :param meshgrid_src_homo: 3xHxW
    :param mpi_disparity_src: BxS
    :param K_src_inv: Bx3x3
    :return:
    """
    B, S = mpi_disparity_src.size()
    H, W = meshgrid_src_homo.size(1), meshgrid_src_homo.size(2)
    mpi_depth_src = torch.reciprocal(mpi_disparity_src)  # BxS

    K_src_inv_Bs33 = K_src_inv.unsqueeze(1).repeat(1, S, 1, 1).reshape(B * S, 3, 3)

    # 3xHxW -> BxSx3xHxW
    meshgrid_src_homo = meshgrid_src_homo.unsqueeze(0).unsqueeze(1).repeat(B, S, 1, 1, 1)
    meshgrid_src_homo_Bs3N = meshgrid_src_homo.reshape(B * S, 3, -1)
    xyz_src = torch.matmul(K_src_inv_Bs33, meshgrid_src_homo_Bs3N)  # BSx3xHW
    xyz_src = xyz_src.reshape(B, S, 3, H * W) * mpi_depth_src.unsqueeze(2).unsqueeze(3)  # BxSx3xHW
    xyz_src_BS3HW = xyz_src.reshape(B, S, 3, H, W)

    return xyz_src_BS3HW


def get_tgt_xyz_from_plane_disparity(xyz_src_BS3HW,
                                     G_tgt_src):
    """

    :param xyz_src_BS3HW: BxSx3xHxW
    :param G_tgt_src: Bx4x4
    :return:
    """
    B, S, _, H, W = xyz_src_BS3HW.size()
    G_tgt_src_Bs33 = G_tgt_src.unsqueeze(1).repeat(1, S, 1, 1).reshape(B*S, 4, 4)
    xyz_tgt = transform_G_xyz(G_tgt_src_Bs33, xyz_src_BS3HW.reshape(B*S, 3, H*W))  # Bsx3xHW
    xyz_tgt_BS3HW = xyz_tgt.reshape(B, S, 3, H, W)  # BxSx3xHxW
    return xyz_tgt_BS3HW


def render_tgt_rgb_depth(H_sampler: HomographySample,
                         mpi_rgb_src,
                         mpi_sigma_src,
                         mpi_disparity_src,
                         xyz_tgt_BS3HW,
                         G_tgt_src,
                         K_src_inv, K_tgt,
                         use_alpha=False,
                         is_bg_depth_inf=False):
    """
    :param H_sampler:
    :param mpi_rgb_src: BxSx3xHxW
    :param mpi_sigma_src: BxSx1xHxW
    :param mpi_disparity_src: BxS
    :param xyz_tgt_BS3HW: BxSx3xHxW
    :param G_tgt_src: Bx4x4
    :param K_src_inv: Bx3x3
    :param K_tgt: Bx3x3
    :return:
    """
    B, S, _, H, W = mpi_rgb_src.size()
    mpi_depth_src = torch.reciprocal(mpi_disparity_src)  # BxS

    # note that here we concat the mpi_src with xyz_tgt, because H_sampler will sample them for tgt frame
    # mpi_src is the same in whatever frame, but xyz has to be in tgt frame
    mpi_xyz_src = torch.cat((mpi_rgb_src, mpi_sigma_src, xyz_tgt_BS3HW), dim=2)  # BxSx(3+1+3)xHxW

    # homography warping of mpi_src into tgt frame
    G_tgt_src_Bs44 = G_tgt_src.unsqueeze(1).repeat(1, S, 1, 1).contiguous().reshape(B*S, 4, 4)  # Bsx4x4
    K_src_inv_Bs33 = K_src_inv.unsqueeze(1).repeat(1, S, 1, 1).contiguous().reshape(B*S, 3, 3)  # Bsx3x3
    K_tgt_Bs33 = K_tgt.unsqueeze(1).repeat(1, S, 1, 1).contiguous().reshape(B*S, 3, 3)  # Bsx3x3

    # BsxCxHxW, BsxHxW
    tgt_mpi_xyz_BsCHW, tgt_mask_BsHW = H_sampler.sample(mpi_xyz_src.view(B*S, 7, H, W),
                                                        mpi_depth_src.view(B*S),
                                                        G_tgt_src_Bs44,
                                                        K_src_inv_Bs33,
                                                        K_tgt_Bs33)

    # mpi composition
    tgt_mpi_xyz = tgt_mpi_xyz_BsCHW.view(B, S, 7, H, W)
    tgt_rgb_BS3HW = tgt_mpi_xyz[:, :, 0:3, :, :]
    tgt_sigma_BS1HW = tgt_mpi_xyz[:, :, 3:4, :, :]
    tgt_xyz_BS3HW = tgt_mpi_xyz[:, :, 4:, :, :]

    tgt_mask_BSHW = tgt_mask_BsHW.view(B, S, H, W)
    tgt_mask_BSHW = torch.where(tgt_mask_BSHW,
                                torch.ones((B, S, H, W), dtype=torch.float32, device=mpi_rgb_src.device),
                                torch.zeros((B, S, H, W), dtype=torch.float32, device=mpi_rgb_src.device))

    # Bx3xHxW, Bx1xHxW, Bx1xHxW
    tgt_z_BS1HW = tgt_xyz_BS3HW[:, :, -1:]
    tgt_sigma_BS1HW = torch.where(tgt_z_BS1HW >= 0,
                                  tgt_sigma_BS1HW,
                                  torch.zeros_like(tgt_sigma_BS1HW, device=tgt_sigma_BS1HW.device))
    tgt_rgb_syn, tgt_depth_syn, _, _ = render(tgt_rgb_BS3HW, tgt_sigma_BS1HW, tgt_xyz_BS3HW,
                                              use_alpha=use_alpha,
                                              is_bg_depth_inf=is_bg_depth_inf)
    tgt_mask = torch.sum(tgt_mask_BSHW, dim=1, keepdim=True)  # Bx1xHxW

    return tgt_rgb_syn, tgt_depth_syn, tgt_mask


def predict_mpi_coarse_to_fine(mpi_predictor, src_imgs, xyz_src_BS3HW_coarse,
                               disparity_coarse_src, S_fine, is_bg_depth_inf):
    if S_fine > 0:
        with torch.no_grad():
            # predict coarse mpi
            mpi_coarse_src_list = mpi_predictor(src_imgs, disparity_coarse_src)  # BxS_coarsex4xHxW
            mpi_coarse_rgb_src = mpi_coarse_src_list[0][:, :, 0:3, :, :]  # BxSx1xHxW
            mpi_coarse_sigma_src = mpi_coarse_src_list[0][:, :, 3:, :, :]  # BxSx1xHxW
            _, _, _, weights = plane_volume_rendering(
                mpi_coarse_rgb_src,
                mpi_coarse_sigma_src,
                xyz_src_BS3HW_coarse,
                is_bg_depth_inf
            )
            weights = weights.mean((2, 3, 4)).unsqueeze(1).unsqueeze(2)

            # sample fine disparity
            disparity_fine_src = sample_pdf(disparity_coarse_src.unsqueeze(1).unsqueeze(2), weights, S_fine)
            disparity_fine_src = disparity_fine_src.squeeze(2).squeeze(1)

            # assemble coarse and fine disparity
            disparity_all_src = torch.cat((disparity_coarse_src, disparity_fine_src), dim=1) # Bx(S_coarse + S_fine)
            disparity_all_src, _ = torch.sort(disparity_all_src, dim=1, descending=True)
        mpi_all_src_list = mpi_predictor(src_imgs, disparity_all_src)  # BxS_coarsex4xHxW
        return mpi_all_src_list, disparity_all_src
    else:
        mpi_coarse_src_list = mpi_predictor(src_imgs, disparity_coarse_src)  # BxS_coarsex4xHxW
        return mpi_coarse_src_list, disparity_coarse_src