File size: 4,219 Bytes
ff00a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import math
from PIL import Image
import cv2
from tqdm import tqdm
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.utils import save_image
import numpy as np
from moviepy.editor import ImageSequenceClip

from utils.mpi import mpi_rendering
from utils.mpi.homography_sampler import HomographySample


def image_to_tensor(img_path, unsqueeze=True):
    rgb = transforms.ToTensor()(Image.open(img_path))
    if unsqueeze:
        rgb = rgb.unsqueeze(0)
    return rgb


def disparity_to_tensor(disp_path, unsqueeze=True):
    disp = cv2.imread(disp_path, -1) / (2 ** 16 - 1)
    disp = torch.from_numpy(disp)[None, ...]
    if unsqueeze:
        disp = disp.unsqueeze(0)
    return disp.float()


def gen_swing_path(num_frames=90, r_x=0.14, r_y=0., r_z=0.10):
    "Return a list of matrix [4, 4]"
    t = torch.arange(num_frames) / (num_frames - 1)
    poses = torch.eye(4).repeat(num_frames, 1, 1)
    poses[:, 0, 3] = r_x * torch.sin(2. * math.pi * t)
    poses[:, 1, 3] = r_y * torch.cos(2. * math.pi * t)
    poses[:, 2, 3] = r_z * (torch.cos(2. * math.pi * t) - 1.)
    return poses.unbind()


def render_3dphoto(
    src_imgs,  # [b,3,h,w]
    mpi_all_src,  # [b,s,4,h,w]
    disparity_all_src,  # [b,s]
    k_src,  # [b,3,3]
    k_tgt,  # [b,3,3]
    save_path,
):
    h, w = mpi_all_src.shape[-2:]
    device = mpi_all_src.device
    homography_sampler = HomographySample(h, w, device)
    k_src_inv = torch.inverse(k_src)

    # preprocess the predict MPI
    xyz_src_BS3HW = mpi_rendering.get_src_xyz_from_plane_disparity(
        homography_sampler.meshgrid,
        disparity_all_src,
        k_src_inv,
    )
    mpi_all_rgb_src = mpi_all_src[:, :, 0:3, :, :]  # BxSx3xHxW
    mpi_all_sigma_src = mpi_all_src[:, :, 3:, :, :]  # BxSx1xHxW
    _, _, blend_weights, _ = mpi_rendering.render(
        mpi_all_rgb_src,
        mpi_all_sigma_src,
        xyz_src_BS3HW,
        use_alpha=False,
        is_bg_depth_inf=False,
    )
    mpi_all_rgb_src = blend_weights * src_imgs.unsqueeze(1) + (1 - blend_weights) * mpi_all_rgb_src

    # render novel views
    swing_path_list = gen_swing_path()
    frames = []
    for cam_ext in tqdm(swing_path_list):
        frame = render_novel_view(
            mpi_all_rgb_src,
            mpi_all_sigma_src,
            disparity_all_src,
            cam_ext,
            k_src_inv,
            k_tgt,
            homography_sampler,
        )
        frame_np = frame[0].permute(1, 2, 0).contiguous().cpu().numpy()  # [b,h,w,3]
        frame_np = np.clip(np.round(frame_np * 255), a_min=0, a_max=255).astype(np.uint8)
        frames.append(frame_np)
    rgb_clip = ImageSequenceClip(frames, fps=30)
    rgb_clip.write_videofile(save_path, verbose=False, codec='mpeg4', logger=None, bitrate='2000k')


def render_novel_view(
    mpi_all_rgb_src,
    mpi_all_sigma_src,
    disparity_all_src,
    G_tgt_src,
    K_src_inv,
    K_tgt,
    homography_sampler,
):
    xyz_src_BS3HW = mpi_rendering.get_src_xyz_from_plane_disparity(
        homography_sampler.meshgrid,
        disparity_all_src,
        K_src_inv
    )

    xyz_tgt_BS3HW = mpi_rendering.get_tgt_xyz_from_plane_disparity(
        xyz_src_BS3HW,
        G_tgt_src
    )

    tgt_imgs_syn, _, _ = mpi_rendering.render_tgt_rgb_depth(
        homography_sampler,
        mpi_all_rgb_src,
        mpi_all_sigma_src,
        disparity_all_src,
        xyz_tgt_BS3HW,
        G_tgt_src,
        K_src_inv,
        K_tgt,
        use_alpha=False,
        is_bg_depth_inf=False,
    )

    return tgt_imgs_syn


class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self, name, fmt=":f"):
        self.name = name
        self.fmt = fmt
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def __str__(self):
        # fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
        # return fmtstr.format(**self.__dict__)
        return f"{self.name:s}: {self.avg:.6f}"