RT-MPINet / app.py
3ZadeSSG's picture
minor fix
5abf62c
import gradio as gr
import torch
import numpy as np
import cv2
import tempfile
from PIL import Image
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from model_Small import MMPI as MMPI_S
from model_Medium import MMPI as MMPI_M
from model_Large import MMPI as MMPI_L
import helperFunctions as helper
import socket
import parameters as params
from utils.mpi.homography_sampler import HomographySample
from utils.utils import (
render_novel_view,
)
# Checkpoint locations for all models
MODEL_S_LOCATION = "./checkpoint/checkpoint_RT_MPI_Small.pth"
MODEL_M_LOCATION = "./checkpoint/checkpoint_RT_MPI_Medium.pth"
MODEL_L_LOCATION = "./checkpoint/checkpoint_RT_MPI_Large.pth"
DEVICE = "cpu"
def getPositionVector(x, y, z, pose):
pose[0,0,3] = x
pose[0,1,3] = y
pose[0,2,3] = z
return pose
def generateCircularTrajectory(radius, num_frames):
angles = np.linspace(0, 2 * np.pi, num_frames, endpoint=False)
return [[radius * np.cos(angle), radius * np.sin(angle), 0] for angle in angles]
def generateWiggleTrajectory(radius, num_frames):
angles = np.linspace(0, 2 * np.pi, num_frames, endpoint=False)
return [[radius * np.cos(angle), 0, radius * np.sin(angle)] for angle in angles]
def create_video_from_memory(frames, fps=60):
if not frames:
return None
height, width, _ = frames[0].shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
temp_video = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
out = cv2.VideoWriter(temp_video.name, fourcc, fps, (width, height))
for frame in frames:
out.write(frame)
out.release()
return temp_video.name
def process_image(img, video_type, radius, num_frames, num_loops, model_type, resolution):
# Parse resolution string
height, width = map(int, resolution.lower().split("x"))
# Select model class and checkpoint
if model_type == "Small":
model_class = MMPI_S
checkpoint = MODEL_S_LOCATION
elif model_type == "Medium":
model_class = MMPI_M
checkpoint = MODEL_M_LOCATION
else:
model_class = MMPI_L
checkpoint = MODEL_L_LOCATION
# Load model
model = model_class(total_image_input=params.params_number_input, height=height, width=width)
model = helper.load_Checkpoint(checkpoint, model, load_cpu=True)
model.to(DEVICE)
model.eval()
min_side = min(img.width, img.height)
left = (img.width - min_side) // 2
top = (img.height - min_side) // 2
right = left + min_side
bottom = top + min_side
img = img.crop((left, top, right, bottom))
if video_type == "Circle":
trajectory = generateCircularTrajectory(radius, num_frames)
elif video_type == "Swing":
trajectory = generateWiggleTrajectory(radius, num_frames)
else:
trajectory = generateCircularTrajectory(radius, num_frames)
transform = transforms.Compose([
transforms.Resize((height, width)),
transforms.ToTensor()
])
img_input = transform(img).to(DEVICE).unsqueeze(0)
grid = params.get_disparity_all_src().unsqueeze(0).to(DEVICE)
k_tgt = torch.tensor([
[0.58, 0, 0.5],
[0, 0.58, 0.5],
[0, 0, 1]]).to(DEVICE)
k_tgt[0, :] *= height
k_tgt[1, :] *= width
k_tgt = k_tgt.unsqueeze(0)
k_src_inv = torch.inverse(k_tgt)
pose = torch.eye(4).to(DEVICE).unsqueeze(0)
homography_sampler = HomographySample(height, width, DEVICE)
with torch.no_grad():
rgb_layers, sigma_layers = model.get_layers(img_input, height=height, width=width)
predicted_depth = model.get_depth(img_input)
predicted_depth = (predicted_depth-predicted_depth.min())/(predicted_depth.max()-predicted_depth.min())
img_predicted_depth = predicted_depth.squeeze().cpu().detach().numpy()
img_predicted_depth_colored = plt.get_cmap('inferno')(img_predicted_depth / np.max(img_predicted_depth))[:, :, :3]
img_predicted_depth_colored = (img_predicted_depth_colored * 255).astype(np.uint8)
img_predicted_depth_colored = Image.fromarray(img_predicted_depth_colored)
layer_depth = model.get_layer_depth(img_input, grid)
img_layer_depth = layer_depth.squeeze().cpu().detach().numpy()
img_layer_depth_colored = plt.get_cmap('inferno')(img_layer_depth / np.max(img_layer_depth))[:, :, :3]
img_layer_depth_colored = (img_layer_depth_colored * 255).astype(np.uint8)
img_layer_depth_colored = Image.fromarray(img_layer_depth_colored)
single_loop_frames = []
for idx, pose_coords in enumerate(trajectory):
#print(f" - Rendering frame {idx + 1}/{len(trajectory)}", end="\r")
with torch.no_grad():
target_pose = getPositionVector(pose_coords[0], pose_coords[1], pose_coords[2], pose)
output_img = render_novel_view(rgb_layers,
sigma_layers,
grid,
target_pose,
k_src_inv,
k_tgt,
homography_sampler)
img_np = output_img.detach().cpu().squeeze(0).permute(1, 2, 0).numpy()
img_np = (img_np * 255).astype(np.uint8)
img_bgr = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
single_loop_frames.append(img_bgr)
final_frames = single_loop_frames * int(num_loops)
video_path = create_video_from_memory(final_frames)
#print("Video generation complete!")
return video_path, img_predicted_depth_colored, img_layer_depth_colored
with gr.Blocks(title="RT-MPINet", theme="default") as demo:
gr.Markdown(
"""
## Parallax Video Generator via Real-Time Multiplane Image Network (RT-MPINet)
We use a smaller 256x256 model for faster inference on CPU instances.
#### Notes:
1. Use a higher number of frames (>80) and loops (>4) to get a smoother video.
2. The default uses 60 frames and 4 camera loops for fast video generation.
3. We have 3 models available (larger the model, slower the inference):
* **Small:** 6.6 Million parameters
* **Medium:** 69 Million parameters
* **Large:** 288 Million parameters (Not available in this demo due to storage limits, you need to download this model and run locally)
* Please refer to our [Project Page](https://realistic3d-miun.github.io/Research/RT_MPINet/index.html) for more details
""")
with gr.Row():
img_input = gr.Image(type="pil", label="Upload Image")
video_type = gr.Dropdown(["Circle", "Swing"], label="Video Type", value="Swing")
with gr.Column():
with gr.Accordion("Advanced Settings", open=False):
radius = gr.Slider(0.001, 0.1, value=0.05, label="Radius (for Circle/Swing)")
num_frames = gr.Slider(10, 180, value=60, step=1, label="Frames per Loop")
num_loops = gr.Slider(1, 10, value=4, step=1, label="Number of Loops")
with gr.Column():
model_type_dropdown = gr.Dropdown(["Small", "Medium"], label="Model Type", value="Medium")
resolution_dropdown = gr.Dropdown(["256x256", "384x384", "512x512"], label="Input Resolution", value="384x384")
generate_btn = gr.Button("Generate Video", variant="primary")
with gr.Row():
video_output = gr.Video(label="Generated Video")
depth_output = gr.Image(label="Depth Map - From Depth Decoder")
layer_depth_output = gr.Image(label="Layer Depth Map - From MPI Layers")
def toggle_custom_path(video_type_selection):
is_custom = (video_type_selection == "Custom")
return gr.update(visible=is_custom)
generate_btn.click(fn=process_image,
inputs=[img_input, video_type, radius, num_frames, num_loops, model_type_dropdown, resolution_dropdown],
outputs=[video_output, depth_output, layer_depth_output])
demo.launch()