import os import torch params_height = 256 params_width = 256 params_m = 32 params_number_input = 1 params_step_size = 2 params_gamma = 0.2 params_num_planes = 32 TRAIN_LOCATION = "./lf_train.txt" VALIDATION_LOCATION = "./lf_validate.txt" TEST_LOCATION = "./lf_test.txt" LOG_FILE_LOCATION = "./logs/training_log_0.txt" CHECKPOINT_LOCATION = "./checkpoint/" RESUME_CHECKPOINT_LOCATION = "./checkpoint/checkpoint_best.pth" START_CHECKPOINT_LOCATION = "./checkpoint/checkpoint_init.pth" DEVICE = "cpu" BATCH_SIZE = 32 LEARNING_RATE = 0.0001 NUM_EPOCHS = 150 START_EPOCH = 0 PRINT_INTERVAL = 20 T_max = 150 os.makedirs("./logs",exist_ok=True) os.makedirs("./checkpoint",exist_ok=True) os.makedirs("./output",exist_ok=True) def uniform_planes(a: float, b: float, n: int) -> torch.Tensor: """ Return n values uniformly spaced *within* (a, b), i.e. excluding the exact endpoints a and b. """ step = (b - a) / (n + 1) # torch.arange(1, n+1) gives [1,2,...,n] return a + step * torch.arange(1, n + 1, dtype=torch.float32) def get_disparity_all_src(): d1 = uniform_planes(0.0, 0.4, 20) d2 = uniform_planes(0.4, 1.0, 12) disparities = torch.cat([d1, d2], dim=0) return disparities