import streamlit as st import torch import requests import os from transformers import AutoTokenizer, AutoModelForCausalLM from huggingface_hub import login, HfApi HF_TOKEN = os.getenv("Allie", None) if HF_TOKEN: from huggingface_hub import login login(HF_TOKEN) # Define model map with access type model_map = { "FinGPT": {"id": "QuantFactory/FinGPT-125M", "local": True}, "InvestLM": {"id": "yixuantt/InvestLM-mistral-AWQ", "local": False}, "FinLLaMA": {"id": "us4/fin-llama3.1-8b", "local": False}, "FinanceConnect": {"id": "ceadar-ie/FinanceConnect-13B", "local": True}, "Sujet-Finance": {"id": "sujet-ai/Sujet-Finance-8B-v0.1", "local": True} } # Cache local models @st.cache_resource def load_local_model(model_id): tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=HF_TOKEN) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device_map="auto" if torch.cuda.is_available() else None, use_auth_token=HF_TOKEN ) return model, tokenizer # Local model querying def query_local_model(model_id, prompt): model, tokenizer = load_local_model(model_id) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=150) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Remote model querying (via Inference API) def query_remote_model(model_id, prompt): headers = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {} payload = {"inputs": prompt, "parameters": {"max_new_tokens": 150}} response = requests.post( f"https://api-inference.huggingface.co/models/{model_id}", headers=headers, json=payload ) if response.status_code == 200: result = response.json() return result[0]["generated_text"] if isinstance(result, list) else result.get("generated_text", "No output") else: raise RuntimeError(f"Failed to call remote model: {response.text}") # Unified query dispatcher def query_model(model_entry, prompt): if model_entry["local"]: return query_local_model(model_entry["id"], prompt) else: return query_remote_model(model_entry["id"], prompt) # --- Streamlit UI --- st.title("💼 Financial LLM Evaluation Interface") model_choice = st.selectbox("Select a Financial Model", list(model_map.keys())) user_question = st.text_area("Enter your financial question:", "What is EBITDA?") if st.button("Get Response"): with st.spinner("Generating response..."): try: model_entry = model_map[model_choice] answer = query_model(model_entry, user_question) st.subheader(f"Response from {model_choice}:") st.write(answer) except Exception as e: st.error(f"Something went wrong: {e}")