import streamlit as st import torch import requests import os from transformers import AutoTokenizer, AutoModelForCausalLM from huggingface_hub import login from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel import torch @st.cache_resource def load_fingpt_lora(): base_model_id = "meta-llama/Llama-2-7b-hf" lora_adapter_id = "FinGPT/fingpt-mt_llama2-7b_lora" tokenizer = AutoTokenizer.from_pretrained(base_model_id, use_auth_token=HF_TOKEN) base_model = AutoModelForCausalLM.from_pretrained( base_model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device_map="auto", use_auth_token=HF_TOKEN ) model = PeftModel.from_pretrained(base_model, lora_adapter_id, use_auth_token=HF_TOKEN) return model, tokenizer # Load token from Hugging Face Space secrets HF_TOKEN = os.getenv("Allie", None) if HF_TOKEN: login(HF_TOKEN) # === Available Models for Selection === model_map = { "FinGPT LoRA" : {"id": "FinGPT/fingpt-mt_llama2-7b_lora", "local": True, "custom_loader": load_fingpt_lora}, "InvestLM (AWQ)": {"id": "yixuantt/InvestLM-mistral-AWQ", "local": False}, "FinLLaMA (LLaMA3.1-8B)": {"id": "us4/fin-llama3.1-8b", "local": False}, "FinanceConnect (13B)": {"id": "ceadar-ie/FinanceConnect-13B", "local": True}, "Sujet-Finance (8B)": {"id": "sujet-ai/Sujet-Finance-8B-v0.1", "local": True} } # === Load local models with caching === @st.cache_resource def load_local_model(model_id): tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=HF_TOKEN) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float32, device_map="auto" if torch.cuda.is_available() else None, use_auth_token=HF_TOKEN ) return model, tokenizer # === Build system prompt for discursive answers === def build_prompt(user_question): return ( "You are FinGPT, a helpful and knowledgeable financial assistant. " "You explain finance, controlling, and tax topics clearly, with examples when useful.\n\n" f"User: {user_question.strip()}\n" "FinGPT:" ) # === Clean repeated/extra outputs === def clean_output(output_text): parts = output_text.split("FinGPT:") return parts[-1].strip() if len(parts) > 1 else output_text.strip() # === Generate with local model === def query_local_model(model_id, prompt): model, tokenizer = load_local_model(model_id) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=300, temperature=0.7, top_k=50, top_p=0.95, repetition_penalty=1.2, do_sample=True, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id ) raw_output = tokenizer.decode(outputs[0], skip_special_tokens=True) return clean_output(raw_output) # === Generate with remote HF API === def query_remote_model(model_id, prompt): headers = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {} payload = {"inputs": prompt, "parameters": {"max_new_tokens": 300}} response = requests.post( f"https://api-inference.huggingface.co/models/{model_id}", headers=headers, json=payload ) if response.status_code == 200: result = response.json() return result[0]["generated_text"] if isinstance(result, list) else result.get("generated_text", "No output") else: raise RuntimeError(f"API Error {response.status_code}: {response.text}") # === Unified model query handler === def query_model(model_entry, user_question): prompt = build_prompt(user_question) if model_entry["local"]: return query_local_model(model_entry["id"], prompt) else: return clean_output(query_remote_model(model_entry["id"], prompt)) # === Streamlit UI Layout === st.set_page_config(page_title="Finance LLM Comparison", layout="centered") st.title("💼 Financial LLM Evaluation Interface") model_choice = st.selectbox("Select a Financial Model", list(model_map.keys())) user_question = st.text_area("Enter your financial question:", "What is EBIT vs EBITDA?", height=150) if st.button("Get Response"): with st.spinner("Thinking like a CFO..."): try: model_entry = model_map[model_choice] answer = query_model(model_entry, user_question) st.text_area("💬 Response:", value=answer, height=300, disabled=True) except Exception as e: st.error(f"❌ Error: {e}")