Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,23 +2,20 @@ from fastapi import FastAPI
|
|
| 2 |
from transformers import AutoTokenizer, AutoModel
|
| 3 |
import torch
|
| 4 |
|
| 5 |
-
#
|
| 6 |
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
| 7 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 8 |
-
model = AutoModel.from_pretrained(MODEL_NAME)
|
| 9 |
|
| 10 |
-
# สร้าง API
|
| 11 |
app = FastAPI()
|
| 12 |
|
| 13 |
-
# ฟังก์ชันแปลงข้อความเป็นเวกเตอร์
|
| 14 |
def get_embedding(text):
|
| 15 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 16 |
with torch.no_grad():
|
| 17 |
outputs = model(**inputs)
|
| 18 |
-
embedding = outputs.last_hidden_state.mean(dim=1)
|
| 19 |
return embedding.squeeze().tolist()
|
| 20 |
|
| 21 |
-
# API Endpoint
|
| 22 |
@app.post("/embed")
|
| 23 |
async def embed_text(data: dict):
|
| 24 |
text = data.get("text", "")
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModel
|
| 3 |
import torch
|
| 4 |
|
| 5 |
+
# เปลี่ยน cache directory เป็น /tmp
|
| 6 |
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, cache_dir="/tmp")
|
| 8 |
+
model = AutoModel.from_pretrained(MODEL_NAME, cache_dir="/tmp")
|
| 9 |
|
|
|
|
| 10 |
app = FastAPI()
|
| 11 |
|
|
|
|
| 12 |
def get_embedding(text):
|
| 13 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 14 |
with torch.no_grad():
|
| 15 |
outputs = model(**inputs)
|
| 16 |
+
embedding = outputs.last_hidden_state.mean(dim=1)
|
| 17 |
return embedding.squeeze().tolist()
|
| 18 |
|
|
|
|
| 19 |
@app.post("/embed")
|
| 20 |
async def embed_text(data: dict):
|
| 21 |
text = data.get("text", "")
|