Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from transformers import AutoTokenizer, AutoModel
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# โหลดโมเดล Sentence-Transformer
|
| 6 |
+
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 8 |
+
model = AutoModel.from_pretrained(MODEL_NAME)
|
| 9 |
+
|
| 10 |
+
# สร้าง API
|
| 11 |
+
app = FastAPI()
|
| 12 |
+
|
| 13 |
+
# ฟังก์ชันแปลงข้อความเป็นเวกเตอร์
|
| 14 |
+
def get_embedding(text):
|
| 15 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 16 |
+
with torch.no_grad():
|
| 17 |
+
outputs = model(**inputs)
|
| 18 |
+
embedding = outputs.last_hidden_state.mean(dim=1) # ใช้ค่าเฉลี่ยของ hidden states
|
| 19 |
+
return embedding.squeeze().tolist()
|
| 20 |
+
|
| 21 |
+
# API Endpoint
|
| 22 |
+
@app.post("/embed")
|
| 23 |
+
async def embed_text(data: dict):
|
| 24 |
+
text = data.get("text", "")
|
| 25 |
+
if not text:
|
| 26 |
+
return {"error": "No text provided"}
|
| 27 |
+
vector = get_embedding(text)
|
| 28 |
+
return {"text": text, "embedding": vector}
|