Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,165 +1,18 @@
|
|
1 |
-
# import os
|
2 |
-
# import langchain
|
3 |
-
# import langchain_huggingface
|
4 |
-
# from langchain_huggingface import HuggingFaceEndpoint,HuggingFacePipeline, ChatHuggingFace
|
5 |
-
# from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
|
6 |
-
|
7 |
-
# os.environ["HUGGINGFACEHUB_API_KEY"]=os.getenv('Ayush')
|
8 |
-
|
9 |
-
# llama_model = HuggingFaceEndpoint(repo_id= "meta-llama/Llama-3.2-3B-Instruct",provider= "nebius",temperature=0.6, max_new_tokens=70,task="conversational")
|
10 |
-
# model_d=ChatHuggingFace(llm =llama_model,repo_id= "meta-llama/Llama-3.2-3B-Instruct",provider= "nebius",temperature=0.6, max_new_tokens=70,task="conversational")
|
11 |
-
# message = [SystemMessage(content = "Answer like you are a hardcore pc gamer"),
|
12 |
-
# HumanMessage(content = "Give me name of top 10 pc games of all time with description")]
|
13 |
-
# result = model_d.invoke(message)
|
14 |
-
# print(result.content)
|
15 |
-
|
16 |
-
# import os
|
17 |
-
# import streamlit as st
|
18 |
-
# from langchain_community.chat_models import ChatHuggingFace
|
19 |
-
# from langchain_community.llms import HuggingFaceHub
|
20 |
-
# from langchain_core.messages import HumanMessage, SystemMessage
|
21 |
-
# from fpdf import FPDF
|
22 |
-
|
23 |
-
# # Set HuggingFace token from env or st.secrets
|
24 |
-
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("keys")
|
25 |
-
# os.environ["HF_TOKEN"]=os.getenv('Ayush')
|
26 |
-
|
27 |
-
|
28 |
-
# # Topic-wise base prompts and models
|
29 |
-
# topic_config = {
|
30 |
-
# "Python": {
|
31 |
-
# "prompt": "Answer like a senior Python developer and coding mentor.",
|
32 |
-
# "model": "meta-llama/Llama-3.2-3B-Instruct"
|
33 |
-
# },
|
34 |
-
# "SQL": {
|
35 |
-
# "prompt": "Answer like a senior SQL engineer with industry experience.",
|
36 |
-
# "model": "google/gemma-3-27b-it"
|
37 |
-
# },
|
38 |
-
# "Power BI": {
|
39 |
-
# "prompt": "Answer like a Power BI expert helping a beginner.",
|
40 |
-
# "model": "mistralai/Mistral-7B-Instruct-v0.1"
|
41 |
-
# },
|
42 |
-
# "Statistics": {
|
43 |
-
# "prompt": "Answer like a statistics professor explaining key concepts to a student.",
|
44 |
-
# "model": "deepseek-ai/DeepSeek-R1"
|
45 |
-
# },
|
46 |
-
# "Machine Learning": {
|
47 |
-
# "prompt": "Answer like an ML mentor guiding a junior data scientist.",
|
48 |
-
# "model": "google/gemma-3-27b-it"
|
49 |
-
# },
|
50 |
-
# "Deep Learning": {
|
51 |
-
# "prompt": "Answer like a deep learning researcher with real-world insights.",
|
52 |
-
# "model": "meta-llama/Llama-3.2-3B-Instruct"
|
53 |
-
# },
|
54 |
-
# "Generative AI": {
|
55 |
-
# "prompt": "Answer like an expert in LLMs and Generative AI research.",
|
56 |
-
# "model": "deepseek-ai/DeepSeek-R1"
|
57 |
-
# }
|
58 |
-
# }
|
59 |
-
|
60 |
-
# # Experience level adjustments to prompt
|
61 |
-
# experience_prompts = {
|
62 |
-
# "Beginner": "Explain with simple language and clear examples for a beginner.",
|
63 |
-
# "Intermediate": "Provide a detailed answer suitable for an intermediate learner.",
|
64 |
-
# "Expert": "Give an in-depth and advanced explanation suitable for an expert."
|
65 |
-
# }
|
66 |
-
|
67 |
-
# # Streamlit app setup
|
68 |
-
# st.set_page_config(page_title="Data Science Mentor", page_icon="📘")
|
69 |
-
# st.title("📘 Data Science Mentor App")
|
70 |
-
|
71 |
-
# if "chat_history" not in st.session_state:
|
72 |
-
# st.session_state.chat_history = []
|
73 |
-
|
74 |
-
# # Multi-select topics
|
75 |
-
# selected_topics = st.multiselect("Select one or more topics:", list(topic_config.keys()), default=["Python"])
|
76 |
-
|
77 |
-
# # Select experience level
|
78 |
-
# experience_level = st.selectbox("Select mentor experience level:", list(experience_prompts.keys()))
|
79 |
-
|
80 |
-
# question = st.text_area("Ask your question here:")
|
81 |
-
|
82 |
-
# if st.button("Get Answer"):
|
83 |
-
# if not selected_topics:
|
84 |
-
# st.warning("Please select at least one topic.")
|
85 |
-
# elif not question.strip():
|
86 |
-
# st.warning("Please enter your question.")
|
87 |
-
# else:
|
88 |
-
# # Combine prompts from selected topics + experience level
|
89 |
-
# combined_prompt = ""
|
90 |
-
# models_used = set()
|
91 |
-
# for topic in selected_topics:
|
92 |
-
# base_prompt = topic_config[topic]["prompt"]
|
93 |
-
# combined_prompt += f"{base_prompt} "
|
94 |
-
# models_used.add(topic_config[topic]["model"])
|
95 |
-
|
96 |
-
# combined_prompt += experience_prompts[experience_level]
|
97 |
-
|
98 |
-
# # Choose the first model from selected topics (or could do more advanced merging)
|
99 |
-
# chosen_model = list(models_used)[0]
|
100 |
-
|
101 |
-
# # Load model
|
102 |
-
# llm = HuggingFaceHub(
|
103 |
-
# repo_id=chosen_model,
|
104 |
-
# model_kwargs={"temperature": 0.6, "max_new_tokens": 150}
|
105 |
-
# )
|
106 |
-
# chat_model = ChatHuggingFace(llm=llm)
|
107 |
-
|
108 |
-
# messages = [
|
109 |
-
# SystemMessage(content=combined_prompt),
|
110 |
-
# HumanMessage(content=question)
|
111 |
-
# ]
|
112 |
-
|
113 |
-
# with st.spinner("Mentor is typing..."):
|
114 |
-
# response = chat_model.invoke(messages)
|
115 |
-
|
116 |
-
# st.markdown("### 🧠 Mentor's Response:")
|
117 |
-
# st.markdown(response.content)
|
118 |
-
|
119 |
-
# # Save chat
|
120 |
-
# st.session_state.chat_history.append((selected_topics, experience_level, question, response.content))
|
121 |
-
|
122 |
-
# # Display chat history
|
123 |
-
# if st.session_state.chat_history:
|
124 |
-
# st.markdown("---")
|
125 |
-
# st.subheader("📝 Chat History")
|
126 |
-
# for i, (topics, exp, q, a) in enumerate(st.session_state.chat_history, 1):
|
127 |
-
# st.markdown(f"**{i}. Topics:** {', '.join(topics)} | **Mentor Level:** {exp}")
|
128 |
-
# st.markdown(f"**You:** {q}")
|
129 |
-
# st.markdown(f"**Mentor:** {a}")
|
130 |
-
# st.markdown("---")
|
131 |
-
|
132 |
-
# # Download PDF
|
133 |
-
# if st.button("📄 Download PDF of this chat"):
|
134 |
-
# pdf = FPDF()
|
135 |
-
# pdf.add_page()
|
136 |
-
# pdf.set_font("Arial", size=12)
|
137 |
-
|
138 |
-
# pdf.cell(200, 10, txt="Data Science Mentor Chat History", ln=True, align="C")
|
139 |
-
# pdf.ln(10)
|
140 |
-
|
141 |
-
# for i, (topics, exp, q, a) in enumerate(st.session_state.chat_history, 1):
|
142 |
-
# pdf.multi_cell(0, 10, f"{i}. Topics: {', '.join(topics)} | Mentor Level: {exp}\nYou: {q}\nMentor: {a}\n\n")
|
143 |
-
|
144 |
-
# pdf_path = "/tmp/mentor_chat.pdf"
|
145 |
-
# pdf.output(pdf_path)
|
146 |
-
|
147 |
-
# with open(pdf_path, "rb") as f:
|
148 |
-
# st.download_button("📥 Click to Download PDF", f, file_name="mentor_chat.pdf", mime="application/pdf")
|
149 |
-
|
150 |
-
|
151 |
import streamlit as st
|
|
|
152 |
from langchain_community.chat_models import ChatHuggingFace
|
153 |
from langchain_community.llms import HuggingFaceHub
|
154 |
from langchain_core.messages import HumanMessage, SystemMessage
|
155 |
|
156 |
# ✅ Load your secret token from Hugging Face Space secrets
|
157 |
-
|
|
|
|
|
158 |
|
159 |
# ✅ Initialize the LLM with your token
|
160 |
llm = HuggingFaceHub(
|
161 |
repo_id="meta-llama/Llama-3.2-3B-Instruct",
|
162 |
-
huggingfacehub_api_token=
|
163 |
model_kwargs={"temperature": 0.6, "max_new_tokens": 100}
|
164 |
)
|
165 |
|
@@ -170,7 +23,7 @@ st.title("🧠 LLaMA Chat (Data Science Mentor)")
|
|
170 |
|
171 |
question = st.text_input("Ask any question about data science topics:")
|
172 |
|
173 |
-
if st.button("Ask"):
|
174 |
messages = [
|
175 |
SystemMessage(content="You are a data science mentor."),
|
176 |
HumanMessage(content=question)
|
@@ -178,35 +31,3 @@ if st.button("Ask"):
|
|
178 |
response = chat_model.invoke(messages)
|
179 |
st.write("### Mentor's Response:")
|
180 |
st.write(response.content)
|
181 |
-
|
182 |
-
|
183 |
-
# import streamlit as st
|
184 |
-
# from langchain_community.chat_models import ChatHuggingFace
|
185 |
-
# from langchain_community.llms import HuggingFaceHub
|
186 |
-
# from langchain_core.messages import HumanMessage, SystemMessage
|
187 |
-
|
188 |
-
# # Directly enter or securely load your Hugging Face API token
|
189 |
-
# HF_TOKEN = "your_huggingface_token_here" # 🔐 Replace with your token or use st.secrets
|
190 |
-
|
191 |
-
# # Load model with token explicitly passed
|
192 |
-
# llm = HuggingFaceHub(
|
193 |
-
# repo_id="meta-llama/Llama-3.2-3B-Instruct",
|
194 |
-
# huggingfacehub_api_token=HF_TOKEN,
|
195 |
-
# model_kwargs={"temperature": 0.6, "max_new_tokens": 100}
|
196 |
-
# )
|
197 |
-
|
198 |
-
# chat_model = ChatHuggingFace(llm=llm)
|
199 |
-
|
200 |
-
# # Streamlit UI
|
201 |
-
# st.title("🧪 Simple LLaMA Chat Test")
|
202 |
-
|
203 |
-
# question = st.text_input("Ask a gaming-related question:", "Give me name of top 10 PC games of all time with description")
|
204 |
-
|
205 |
-
# if st.button("Ask"):
|
206 |
-
# messages = [
|
207 |
-
# SystemMessage(content="Answer like you are a hardcore PC gamer"),
|
208 |
-
# HumanMessage(content=question)
|
209 |
-
# ]
|
210 |
-
# response = chat_model.invoke(messages)
|
211 |
-
# st.write("### Response:")
|
212 |
-
# st.write(response.content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import os
|
3 |
from langchain_community.chat_models import ChatHuggingFace
|
4 |
from langchain_community.llms import HuggingFaceHub
|
5 |
from langchain_core.messages import HumanMessage, SystemMessage
|
6 |
|
7 |
# ✅ Load your secret token from Hugging Face Space secrets
|
8 |
+
hf_token = os.getenv("Data_science") # Make sure "Data_science" is set in Space secrets
|
9 |
+
os.environ["HUGGINGFACEHUB_API_KEY"] = hf_token
|
10 |
+
os.environ["HF_TOKEN"] = hf_token
|
11 |
|
12 |
# ✅ Initialize the LLM with your token
|
13 |
llm = HuggingFaceHub(
|
14 |
repo_id="meta-llama/Llama-3.2-3B-Instruct",
|
15 |
+
huggingfacehub_api_token=hf_token, # <-- use hf_token here
|
16 |
model_kwargs={"temperature": 0.6, "max_new_tokens": 100}
|
17 |
)
|
18 |
|
|
|
23 |
|
24 |
question = st.text_input("Ask any question about data science topics:")
|
25 |
|
26 |
+
if st.button("Ask") and question.strip():
|
27 |
messages = [
|
28 |
SystemMessage(content="You are a data science mentor."),
|
29 |
HumanMessage(content=question)
|
|
|
31 |
response = chat_model.invoke(messages)
|
32 |
st.write("### Mentor's Response:")
|
33 |
st.write(response.content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|