Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,106 +1,6 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
import
|
5 |
-
from
|
6 |
-
import
|
7 |
-
|
8 |
-
st.set_page_config(page_title="Data Science Mentor", layout="wide")
|
9 |
-
|
10 |
-
# Cache LangChain models per topic
|
11 |
-
@st.cache_resource
|
12 |
-
def load_langchain_model(topic):
|
13 |
-
device = 0 if torch.cuda.is_available() else -1
|
14 |
-
if topic == "Python":
|
15 |
-
return ChatHuggingFace(repo_id="tiiuae/falcon-7b-instruct", temperature=0.6, max_new_tokens=256, task="conversational", device=device)
|
16 |
-
elif topic == "GenAI":
|
17 |
-
return ChatHuggingFace(repo_id="google/flan-t5-large", temperature=0.6, max_new_tokens=256, task="conversational", device=device)
|
18 |
-
elif topic == "Statistics":
|
19 |
-
return ChatHuggingFace(repo_id="databricks/dolly-v2-3b", temperature=0.6, max_new_tokens=256, task="conversational", device=device)
|
20 |
-
elif topic == "SQL":
|
21 |
-
return ChatHuggingFace(repo_id="google/flan-t5-base", temperature=0.6, max_new_tokens=256, task="conversational", device=device)
|
22 |
-
else:
|
23 |
-
# Fallback for Power BI, Machine Learning, Deep Learning
|
24 |
-
return ChatHuggingFace(repo_id="tiiuae/falcon-7b-instruct", temperature=0.6, max_new_tokens=256, task="conversational", device=device)
|
25 |
-
|
26 |
-
def generate_answer(model, topic, level, question):
|
27 |
-
system_prompt = f"You are a {level} level mentor in {topic}. Answer the user's question accordingly."
|
28 |
-
messages = [
|
29 |
-
SystemMessage(content=system_prompt),
|
30 |
-
HumanMessage(content=question)
|
31 |
-
]
|
32 |
-
response = model.invoke(messages)
|
33 |
-
return response.content
|
34 |
-
|
35 |
-
def create_pdf(chat_history):
|
36 |
-
pdf = FPDF()
|
37 |
-
pdf.add_page()
|
38 |
-
pdf.set_auto_page_break(auto=True, margin=15)
|
39 |
-
pdf.set_font("Arial", size=12)
|
40 |
-
|
41 |
-
pdf.cell(0, 10, "Data Science Mentor Chat History", ln=True, align='C')
|
42 |
-
pdf.ln(10)
|
43 |
-
|
44 |
-
for i in range(0, len(chat_history), 2):
|
45 |
-
user_msg = chat_history[i][1]
|
46 |
-
mentor_msg = chat_history[i+1][1] if i+1 < len(chat_history) else ""
|
47 |
-
|
48 |
-
pdf.set_font("Arial", 'B', 12)
|
49 |
-
pdf.multi_cell(0, 10, f"You: {user_msg}")
|
50 |
-
pdf.set_font("Arial", '', 12)
|
51 |
-
pdf.multi_cell(0, 10, f"Mentor: {mentor_msg}")
|
52 |
-
pdf.ln(5)
|
53 |
-
|
54 |
-
pdf_buffer = io.BytesIO()
|
55 |
-
pdf.output(pdf_buffer)
|
56 |
-
pdf_buffer.seek(0)
|
57 |
-
return pdf_buffer
|
58 |
-
|
59 |
-
# --- Streamlit UI ---
|
60 |
-
|
61 |
-
st.title("🤖 Data Science Mentor")
|
62 |
-
|
63 |
-
with st.sidebar:
|
64 |
-
st.header("Configure Your Mentor")
|
65 |
-
topic = st.radio("Select Topic:", ["Python", "GenAI", "Statistics", "Power BI", "SQL", "Machine Learning", "Deep Learning"])
|
66 |
-
level = st.radio("Select Experience Level:", ["Beginner", "Intermediate", "Advanced"])
|
67 |
-
|
68 |
-
# Load LangChain model for selected topic
|
69 |
-
model = load_langchain_model(topic)
|
70 |
-
|
71 |
-
if "chat_history" not in st.session_state:
|
72 |
-
st.session_state.chat_history = []
|
73 |
-
|
74 |
-
st.subheader(f"Ask your {topic} question:")
|
75 |
-
user_input = st.text_area("Type your question here:", height=100)
|
76 |
-
|
77 |
-
if st.button("Get Answer"):
|
78 |
-
if user_input.strip() == "":
|
79 |
-
st.warning("Please enter a question.")
|
80 |
-
else:
|
81 |
-
with st.spinner("Mentor is thinking..."):
|
82 |
-
answer = generate_answer(model, topic, level, user_input)
|
83 |
-
st.session_state.chat_history.append(("You", user_input))
|
84 |
-
st.session_state.chat_history.append(("Mentor", answer))
|
85 |
-
|
86 |
-
# Display chat history
|
87 |
-
if st.session_state.chat_history:
|
88 |
-
for i in range(0, len(st.session_state.chat_history), 2):
|
89 |
-
user_msg = st.session_state.chat_history[i][1]
|
90 |
-
mentor_msg = st.session_state.chat_history[i+1][1] if i+1 < len(st.session_state.chat_history) else ""
|
91 |
-
st.markdown(f"**You:** {user_msg}")
|
92 |
-
st.markdown(f"**Mentor:** {mentor_msg}")
|
93 |
-
st.markdown("---")
|
94 |
-
|
95 |
-
# PDF Download Button
|
96 |
-
if st.button("Download Chat as PDF"):
|
97 |
-
pdf_bytes = create_pdf(st.session_state.chat_history)
|
98 |
-
st.download_button(
|
99 |
-
label="Download PDF",
|
100 |
-
data=pdf_bytes,
|
101 |
-
file_name="chat_history.pdf",
|
102 |
-
mime="application/pdf"
|
103 |
-
)
|
104 |
-
|
105 |
-
if st.button("Clear Chat"):
|
106 |
-
st.session_state.chat_history = []
|
|
|
1 |
+
import os
|
2 |
+
import langchain
|
3 |
+
import langchain_huggingface
|
4 |
+
from langchain_huggingface import HuggingFaceEndpoint,HuggingFacePipeline, ChatHuggingFace
|
5 |
+
from langchain_google_genai import GoogleGenerativeAI, ChatGoogleGenerativeAI
|
6 |
+
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|