import streamlit as st import os from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace from langchain_core.messages import HumanMessage, SystemMessage hf = os.getenv('Data_science') os.environ['HUGGINGFACEHUB_API_TOKEN'] = hf os.environ['HF_TOKEN'] = hf # Page config st.set_page_config(page_title="Python Mentor Chat", layout="centered") # Inject home page CSS style st.markdown(""" """, unsafe_allow_html=True) # Title st.title("🐍 Python Mentor Chat") # Sidebar st.sidebar.title("Mentor Preferences") experience_label = st.sidebar.selectbox(import streamlit as st import os from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace from langchain_core.messages import HumanMessage, SystemMessage # Set environment variables for Hugging Face token hf = os.getenv('hf') os.environ['HUGGINGFACEHUB_API_TOKEN'] = hf os.environ['HF_TOKEN'] = hf # Page config st.set_page_config(page_title="Deep Learning Mentor Chat", layout="centered") # Inject CSS styling from homepage st.markdown(""" """, unsafe_allow_html=True) # Title st.title("🧠 Deep Learning Mentor Chat") # Sidebar experience selector st.sidebar.title("Mentor Preferences") exp = st.sidebar.selectbox("Select experience level:", ['Beginner', 'Intermediate', 'Expert']) # Initialize LLM mentor_llm = HuggingFaceEndpoint( repo_id='Qwen/Qwen3-32B', provider='sambanova', temperature=0.7, max_new_tokens=150, task='conversational' ) deep_mentor = ChatHuggingFace( llm=mentor_llm, repo_id='Qwen/Qwen3-32B', provider='sambanova', temperature=0.7, max_new_tokens=150, task='conversational' ) # Session key PAGE_KEY = "deep_learning_chat_history" if PAGE_KEY not in st.session_state: st.session_state[PAGE_KEY] = [] # Chat form with st.form(key="chat_form"): user_input = st.text_input("Ask your question:") submit = st.form_submit_button("Send") # Handle submission if submit and user_input: system_prompt = ( f"You are a deep learning mentor with {exp.lower()} level expertise. " f"Answer only deep learning-related questions, teach in a friendly tone, and limit responses to 150 words. " f"If a question is outside deep learning, politely say it's out of scope." ) messages = [SystemMessage(content=system_prompt), HumanMessage(content=user_input)] result = deep_mentor.invoke(messages) st.session_state[PAGE_KEY].append((user_input, result.content)) # Display chat history st.subheader("🗨️ Chat History") for user, bot in st.session_state[PAGE_KEY]: st.markdown(f"**You:** {user}") st.markdown(f"**Mentor:** {bot}") st.markdown("---") "Select your experience level:", ["Beginner", "Intermediate", "Experienced"] ) # Initialize model deep_seek_skeleton = HuggingFaceEndpoint( repo_id='meta-llama/Llama-3.2-3B-Instruct', provider='sambanova', temperature=0.7, max_new_tokens=50, task='conversational' ) deep_seek = ChatHuggingFace( llm=deep_seek_skeleton, repo_id='meta-llama/Llama-3.2-3B-Instruct', provider='sambanova', temperature=0.7, max_new_tokens=50, task='conversational' ) PAGE_KEY = "python_chat_history" if PAGE_KEY not in st.session_state: st.session_state[PAGE_KEY] = [] # Chat input form with st.form(key="chat_form"): user_input = st.text_input("Ask your question:") submit = st.form_submit_button("Send") # Chat logic if submit and user_input: system_prompt = ( f"Act as a python mentor with {experience_label.lower()} experience. " f"Teach in a friendly manner and keep answers within 150 words. " f"If a question is not about python, politely mention it's out of scope." ) messages = [SystemMessage(content=system_prompt), HumanMessage(content=user_input)] result = deep_seek.invoke(messages) st.session_state[PAGE_KEY].append((user_input, result.content)) # Chat history st.subheader("🗨️ Chat History") for user, bot in st.session_state[PAGE_KEY]: st.markdown(f"**You:** {user}") st.markdown(f"**Mentor:** {bot}") st.markdown("---")